Jérémie Bouttier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérémie Bouttier.
Nuclear Physics | 2003
Jérémie Bouttier; P. Di Francesco; E. Guitter
We derive the exact generating function for planar maps (genus zero fatgraphs) with vertices of arbitrary even valence and with two marked points at a fixed geodesic distance. This is done in a purely combinatorial way based on a bijection with decorated trees, leading to a recursion relation on the geodesic distance. The latter is solved exactly in terms of discrete soliton-like expressions, suggesting an underlying integrable structure. We extract from this solution the fractal dimensions at the various (multi)-critical points, as well as the precise scaling forms of the continuum two-point functions and the probability distributions for the geodesic distance in (multi)-critical random surfaces. The two-point functions are shown to obey differential equations involving the residues of the KdV hierarchy.
Nuclear Physics | 2002
Jérémie Bouttier; P. Di Francesco; E. Guitter
We consider the problem of enumeration of planar maps and revisit its one-matrix model solution in the light of recent combinatorial techniques involving conjugated trees. We adapt and generalize these techniques so as to give an alternative and purely combinatorial solution to the problem of counting arbitrary planar maps with prescribed vertex degrees.
Journal of Physics A | 2009
Jérémie Bouttier; E. Guitter
We consider quadrangulations with a boundary and derive explicit expressions for the generating functions of these maps with either a marked vertex at a prescribed distance from the boundary, or two boundary vertices at a prescribed mutual distance in the map. For large maps, this yields explicit formulae for the bulk–boundary and boundary–boundary correlators in the various encountered scaling regimes: a small boundary, a dense boundary and a critical boundary regime. The critical boundary regime is characterized by a one-parameter family of scaling functions interpolating between the Brownian map and the Brownian continuum random tree. We discuss the cases of both generic and self-avoiding boundaries, which are shown to share the same universal scaling limit. We finally address the question of the bulk–loop distance statistics in the context of planar quadrangulations equipped with a self-avoiding loop. Here again, a new family of scaling functions describing critical loops is discovered.
Communications in Mathematical Physics | 2012
Jérémie Bouttier; E. Guitter
We present an unexpected connection between two map enumeration problems. The first one consists in counting planar maps with a boundary of prescribed length. The second one consists in counting planar maps with two points at a prescribed distance. We show that, in the general class of maps with controlled face degrees, the solution for both problems is actually encoded into the same quantity, respectively via its power series expansion and its continued fraction expansion. We then use known techniques for tackling the first problem in order to solve the second. This novel viewpoint provides a constructive approach for computing the so-called distance-dependent two-point function of general planar maps. We prove and extend some previously predicted exact formulas, which we identify in terms of particular Schur functions.
Journal of Statistical Mechanics: Theory and Experiment | 2008
Jérémie Bouttier; E. Guitter
We compute the generating function of random planar quadrangulations with three marked vertices at prescribed pairwise distances. In the scaling limit of large quadrangulations, this discrete three-point function converges to a simple universal scaling function, which is the continuous three-point function of pure 2D quantum gravity. We give explicit expressions for this universal three-point function in both the grand-canonical and canonical ensembles. Various limiting regimes are studied when some of the distances become large or small. By considering the case where the marked vertices are aligned, we also obtain the probability law for the number of geodesic points, namely vertices that lie on a geodesic path between two given vertices, and at prescribed distances from these vertices.
Journal of Physics A | 2012
Gaëtan Borot; Jérémie Bouttier; E. Guitter
We consider the O(n) loop model on tetravalent maps and show how to rephrase it into a model of bipartite maps without loops. This follows from a combinatorial decomposition that consists in cutting the O(n) model configurations along their loops so that each elementary piece is a map that may have arbitrary even face degrees. In the induced statistics, these maps are drawn according to a Boltzmann distribution whose parameters (the face weights) are determined by a fixed point condition. In particular, we show that the dense and dilute critical points of the O(n) model correspond to bipartite maps with large faces (i.e. whose degree distribution has a fat tail). The re-expression of the fixed point condition in terms of linear integral equations allows us to explore the phase diagram of the model. In particular, we determine this phase diagram exactly for the simplest version of the model where the loops are ‘rigid’. Several generalizations of the model are discussed.
Nuclear Physics | 2003
Jérémie Bouttier; P. Di Francesco; E. Guitter
We revisit the problem of hard particles on planar random tetravalent graphs in view of recent combinatorial techniques relating planar diagrams to decorated trees. We show how to recover the two-matrix model solution to this problem in this purely combinatorial language.
Nuclear Physics | 2003
Jérémie Bouttier; P. Di Francesco; E. Guitter
We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the information on the geodesic distance from the origin. In the case of infinitely large graphs, we give in particular explicit formulas for the probabilities that the origin have given numbers of neighboring edges and/or vertices, as well as explicit values for the corresponding moments.
arXiv: Mathematical Physics | 2017
Cédric Boutillier; Jérémie Bouttier; Guillaume Chapuy; Sylvie Corteel; Sanjay Ramassamy
We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson-fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions. Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wicks theorem. Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimer model. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem.
Journal of Physics A | 2012
Gaëtan Borot; Jérémie Bouttier; E. Guitter
We continue our investigation of the nested loop approach to the O(n) model on random maps, by extending it to the case where loops may visit faces of arbitrary degree. This allows us to express the partition function of the O(n) loop model as a specialization of the multivariate generating function of maps with controlled face degrees, where the face weights are determined by a fixed-point condition. We deduce a functional equation for the resolvent of the model, involving some ring generating function describing the immediate vicinity of the loops. When the ring generating function has a single pole, the model is amenable to a full solution. Physically, such a situation is realized upon considering loops visiting triangles only and further weighting these loops by some local bending energy. Our model interpolates between the two previously solved cases of triangulations without bending energy and quadrangulations with rigid loops. We analyze the phase diagram of our model in details and derive in particular the location of its non-generic critical points, which are in the universality classes of the dense and dilute O(n) model coupled to 2D quantum gravity. Similar techniques are also used to solve a twisting loop model on quadrangulations where loops are forced to make turns within each visited square. Along the way, we revisit the problem of maps with controlled, possibly unbounded, face degrees and give combinatorial derivations of the one-cut lemma and of the functional equation for the resolvent.