Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Chien is active.

Publication


Featured researches published by Jeremy Chien.


Oncogene | 2004

A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer

Jeremy Chien; Julie Staub; Shou Ih Hu; Michele R. Erickson-Johnson; Fergus J. Couch; David I. Smith; Robert M. Crowl; Scott H. Kaufmann; Viji Shridhar

We report here that HtrA1, a candidate tumor suppressor, is downregulated in ovarian cancer. Expression of HtrA1 is downregulated in five of seven ovarian cancer cell lines. In total, 59% of primary ovarian tumors have either a complete absence or markedly reduced levels of HtrA1 expression compared to the brushings of ovarian surface epithelium. Primary ovarian tumors show high frequencies of loss of an allele at microsatellite markers near htrA1 locus on 10q26. Downregulation of HtrA1 in SKOV3 by antisense transfection promotes anchorage-independent growth, while exogenous expression of HtrA1 in OV202 induces cell death. HtrA1-induced cell death is not inhibited by the broad caspase inhibitor, zVAD(OMe)fmk, but instead reflects serine protease activity associated with HtrA1. These observations raise the possibility of HtrA1 as a candidate tumor suppressor involved in promoting serine-protease-mediated cell death and that downregulation of HtrA1 in ovarian cancer may contribute to malignant phenotype.


Oncogene | 2004

HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma

Jin Ping Lai; Jeremy Chien; Scott E. Strome; Julie Staub; Damian P. Montoya; Eddie L. Greene; David I. Smith; Lewis R. Roberts; Viji Shridhar

Recently, we cloned a novel sulfatase domain-containing downregulated gene, HSulf-1, which modulates heparin-binding growth factor signaling in ovarian cancer. Based on the pilot data showing the loss of HSulf-1 in head and neck squamous cell carcinoma cell lines (SCCHN), we sought to employ SCCHN as a model to define the role of HSulf-1 in the molecular regulation of tumorigenecity. Three SCCHN lines (012SCC, WMMSCC, and 015SCC) had no detectable HSulf-1 mRNA. Clonal lines of HSulf-1-expressing 012SCC attenuated the activation of ERK/mitogen-activated protein kinase (MAPK) signaling mediated by fibroblast growth factor (FGF-2) and both ERK/MAPK and Akt signaling mediated by hepatocyte growth factor (HGF). Consistent with this downregulation, phosphorylation of HGF receptor, c-Met, which is frequently overexpressed in SCCHN, was also attenuated in HSulf-1 clonal 012SCC cell lines. HGF markedly enhanced the motility and migration of vector-transfected cells in a transwell invasion chamber. However, HGF-mediated motility and invasion was attenuated in HSulf-1 clonal 012SCC cell lines. In addition, transfected cells displayed significant growth inhibition concomitant with a decrease in mitogenecity, as measured by thymidine incorporation and increased sensitivity to staurosporine- and cisplatin-induced apoptosis. These data suggest that HSulf-1 normally functions as a negative regulator in cell growth and loss of HSulf-1 in SCCHN potentiates growth factor signaling, enhances motility, invasiveness and inhibits stress-induced apoptosis, with a resulting increase in tumorigenecity.


Journal of Clinical Investigation | 2006

Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity

Jeremy Chien; Giovanni D. Aletti; Alfonso Baldi; Vincenzo Catalano; Pietro Muretto; Gary L. Keeney; Kimberly R. Kalli; Julie Staub; Michael Ehrmann; William A. Cliby; Yean Kit Lee; Keith C. Bible; Lynn C. Hartmann; Scott H. Kaufmann; Viji Shridhar

Resistance to chemotherapy presents a serious challenge in the successful treatment of various cancers and is mainly responsible for mortality associated with disseminated cancers. Here we show that expression of HtrA1, which is frequently downregulated in ovarian cancer, influences tumor response to chemotherapy by modulating chemotherapy-induced cytotoxicity. Downregulation of HtrA1 attenuated cisplatin- and paclitaxel-induced cytotoxicity, while forced expression of HtrA1 enhanced cisplatin- and paclitaxel-induced cytotoxicity. HtrA1 expression was upregulated by both cisplatin and paclitaxel treatment. This upregulation resulted in limited autoproteolysis and activation of HtrA1. Active HtrA1 induces cell death in a serine protease-dependent manner. The potential role of HtrA1 as a predictive factor of clinical response to chemotherapy was assessed in both ovarian and gastric cancer patients receiving cisplatin-based regimens. Patients with ovarian or gastric tumors expressing higher levels of HtrA1 showed a higher response rate compared with those with lower levels of HtrA1 expression. These findings uncover what we believe to be a novel pathway by which serine protease HtrA1 mediates paclitaxel- and cisplatin-induced cytotoxicity and suggest that loss of HtrA1 in ovarian and gastric cancers may contribute to in vivo chemoresistance.


Cancer Research | 2006

HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.

Keishi Narita; Julie Staub; Jeremy Chien; Kristy Meyer; Maret Bauer; Andreas Friedl; Sundaram Ramakrishnan; Viji Shridhar

We previously identified HSulf-1 as a down-regulated gene in several tumor types including ovarian, breast, and hepatocellular carcinomas. Loss of HSulf-1, which selectively removes 6-O-sulfate from heparan sulfate, up-regulates heparin-binding growth factor signaling and confers resistance to chemotherapy-induced apoptosis. Here we report that HSulf-1 expression in MDA-MB-468 breast carcinoma clonal lines leads to reduced proliferation in vitro and reduced tumor burden in athymic nude mice in vivo. Additionally, xenografts derived from HSulf-1-expressing stable clones of carcinoma cells showed reduced vessel density, marked necrosis, and apoptosis, indicative of inhibition of angiogenesis. Consistent with this observation, HSulf-1-expressing clonal lines showed reduced staining with the endothelial marker CD31 in Matrigel plug assay, indicating that HSulf-1 expression inhibits angiogenesis. More importantly, HSulf-1 expression in the xenografts was associated with a reduced ability of vascular endothelial cell heparan sulfate to participate in a complex with fibroblast growth factor 2 (FGF-2) and its receptor tyrosine kinase FGF receptor 1c. In vitro, short hairpin RNA-mediated down-regulation of HSulf-1 in human umbilical vein endothelial cells (HUVEC) resulted in an increased proliferation mediated by heparan sulfate-dependent FGF-2, hepatocyte growth factor, and vascular endothelial growth factor 165 (VEGF165) but not by heparan sulfate-independent VEGF121. HSulf-1 down-regulation also enhanced downstream signaling through the extracellular signal-regulated kinase pathway compared with untreated cells. Consistent with the role of heparan sulfate glycosaminoglycan sulfation in VEGF-mediated signaling, treatment of HUVEC cells with chlorate, which inhibits heparan sulfate glycosaminoglycan sulfation and therefore mimics HSulf-1 overexpression, led to an attenuated VEGF-mediated signaling. Collectively, these observations provide the first evidence of a novel mechanism by which HSulf-1 modulates the function of heparan sulfate binding VEGF165 in proliferation and angiogenesis.


Current Cancer Drug Targets | 2009

HtrA Serine Proteases as Potential Therapeutic Targets in Cancer

Jeremy Chien; Mara Campioni; Viji Shridhar; Alfonso Baldi

The human HtrA family of serine proteases consists of four members: HtrA1, HtrA2, HtrA3 and HtrA4. Although prokaryotic HtrA proteins are well characterized in their dual roles as chaperones and proteases that degrade misfolded proteins in the periplasm, some members of mammalian HtrA proteins are described as potential modulators of programmed cell death and chemotherapy-induced cytotoxicity. Goal of this review article is to describe the molecular alterations associated with these HtrA serine proteases and how these alterations may be associated with tumor behavior and response to chemotherapy. We will also discuss evidence that chemotherapeutic drugs regulate the expression and activation of HtrA serine proteases and that these proteases contributes to programmed cell death. Finally, we will discuss the potential role of epigenetic therapy in targeting the expression and activation of HtrA serine proteases and the mechanisms by which these proteases enhance cytotoxic effect of conventional chemotherapy.


Oncogene | 2007

Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance

Julie Staub; Jeremy Chien; Xiang Qian; Keishi Narita; Giovanni D. Aletti; M Scheerer; Lewis R. Roberts; Julian R. Molina; Vijayalakshmi Shridhar

To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2′-deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P=0.0146, χ2 test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.


PLOS Computational Biology | 2013

Network-based Survival Analysis Reveals Subnetwork Signatures for Predicting Outcomes of Ovarian Cancer Treatment

Wei Zhang; Takayo Ota; Viji Shridhar; Jeremy Chien; Baolin Wu; Rui Kuang

Cox regression is commonly used to predict the outcome by the time to an event of interest and in addition, identify relevant features for survival analysis in cancer genomics. Due to the high-dimensionality of high-throughput genomic data, existing Cox models trained on any particular dataset usually generalize poorly to other independent datasets. In this paper, we propose a network-based Cox regression model called Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple ovarian cancer datasets. Net-Cox integrates gene network information into the Coxs proportional hazard model to explore the co-expression or functional relation among high-dimensional gene expression features in the gene network. Net-Cox was applied to analyze three independent gene expression datasets including the TCGA ovarian cancer dataset and two other public ovarian cancer datasets. Net-Cox with the network information from gene co-expression or functional relations identified highly consistent signature genes across the three datasets, and because of the better generalization across the datasets, Net-Cox also consistently improved the accuracy of survival prediction over the Cox models regularized by or . This study focused on analyzing the death and recurrence outcomes in the treatment of ovarian carcinoma to identify signature genes that can more reliably predict the events. The signature genes comprise dense protein-protein interaction subnetworks, enriched by extracellular matrix receptors and modulators or by nuclear signaling components downstream of extracellular signal-regulated kinases. In the laboratory validation of the signature genes, a tumor array experiment by protein staining on an independent patient cohort from Mayo Clinic showed that the protein expression of the signature gene FBN1 is a biomarker significantly associated with the early recurrence after 12 months of the treatment in the ovarian cancer patients who are initially sensitive to chemotherapy. Net-Cox toolbox is available at http://compbio.cs.umn.edu/Net-Cox/.


Journal of Biological Chemistry | 2007

Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer.

Keishi Narita; Jeremy Chien; Sally A. Mullany; Julie Staub; Xiang Qian; Wilma L. Lingle; Viji Shridhar

Heparan sulfate (HS) glycosaminoglycans are the oligosaccharide chains of heparan sulfate proteoglycans. The sulfation of HS glycosaminoglycan residues is required for its interaction with various heparin-binding growth factors to promote their biological activities to activate their high affinity receptor tyrosine kinases. We have identified HS glycosaminoglycan-6-O-endosulfatase HSulf-1 as a down-regulated gene in ovarian, breast, and several other cancer cell lines. Here we have shown that HSulf-1 inhibits autocrine activation of the EGFR-ERK (epidermal growth factor receptor-extracellular signal-regulated kinase) pathway induced by serum withdrawal in MDA-MB-468 breast cancer cells. Short hairpin RNA-mediated down-regulation of HSulf-1 in HSulf-1 clonal lines of MDA-MB-468 led to a significant increase in autocrine activation of ERK compared with vector only control. The autocrine signaling was also inhibited with neutralization antibodies against amphiregulin and HB-EGF, the heparin-binding growth factor family of the EGF superfamily. Furthermore, HSulf-1-mediated inhibition of autocrine signaling was associated with reduced cyclin D1 levels, leading to decreased S phase fraction and increased G2–M fraction, as well as increased cell death. Finally, evaluation of HSulf-1 expression levels in primary invasive breast tumors by RNA in situ hybridization indicated that HSulf-1 is down-regulated in the majority (60%) of tumors, with a predominant association with lobular histology. These data suggest a potential role of HSulf-1 down-regulation in mammary carcinogenesis.


Cancer Research | 2010

Downregulation of HtrA1 Promotes Resistance to Anoikis and Peritoneal Dissemination of Ovarian Cancer Cells

Xiaoping He; Takayo Ota; Peng Liu; Changqing Su; Jeremy Chien; Viji Shridhar

We previously identified serine protease HtrA1 as a downregulated gene in epithelial ovarian cancer (EOC), but the functional consequence of loss of HtrA1 in EOC remains largely unclear. Here, we report that loss of HtrA1 attenuates anoikis--a critical physiologic barrier for tumor metastasis. In response to loss of anchorage, HtrA1 expression was upregulated in SKOV3 cells, resulting in autocatalytic activation of HtrA1. Stable knockdown of HtrA1 in SKOV3 and TOV21G cells resulted in resistance to anoikis due to enhanced activation of epidermal growth factor receptor (EGFR)/AKT pathway. In suspended SKOV3 cells, enhanced expression of HtrA1 inhibited EGFR/AKT pathway, leading to increased cell death, whereas protease-inactive mutant HtrA1 failed to result in either the inhibition of EGFR/AKT pathway or increased cell death, suggesting the requirement of HtrA1 protease activity in regulating anoikis. Immunoprecipitation and immunofluorescence assays revealed that HtrA1 interacted with EGFR not only on the cell membrane but also in the nucleus. Most importantly, downregulation of HtrA1 significantly enhanced the peritoneal dissemination of SKOV3ip1 cells in nonobese diabetic/severe combined immunodeficient mice, with increased phospho-EGFR level in corresponding tumor nodules compared with that in xenografts originated from the control cells. Taken together, these data reveal for the first time a novel function of HtrA1 in promoting anoikis by attenuating activation of EGFR/AKT pathway that may contribute to its metastasis suppression capacity, thus providing a possible explanation for the aggressive nature of human ovarian tumors with downregulated HtrA1.


Molecular and Cellular Biology | 2009

Serine Protease HtrA1 Associates with Microtubules and Inhibits Cell Migration

Jeremy Chien; Takayo Ota; Giovanni D. Aletti; Ravi Shridhar; Mariarosaria Boccellino; Lucio Quagliuolo; Alfonso Baldi; Viji Shridhar

ABSTRACT HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified α- and β-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of α-, β-, and γ-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in theregulation of cell motility by modulating microtubule stability.

Collaboration


Dive into the Jeremy Chien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge