Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Staub is active.

Publication


Featured researches published by Julie Staub.


Oncogene | 2004

A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer

Jeremy Chien; Julie Staub; Shou Ih Hu; Michele R. Erickson-Johnson; Fergus J. Couch; David I. Smith; Robert M. Crowl; Scott H. Kaufmann; Viji Shridhar

We report here that HtrA1, a candidate tumor suppressor, is downregulated in ovarian cancer. Expression of HtrA1 is downregulated in five of seven ovarian cancer cell lines. In total, 59% of primary ovarian tumors have either a complete absence or markedly reduced levels of HtrA1 expression compared to the brushings of ovarian surface epithelium. Primary ovarian tumors show high frequencies of loss of an allele at microsatellite markers near htrA1 locus on 10q26. Downregulation of HtrA1 in SKOV3 by antisense transfection promotes anchorage-independent growth, while exogenous expression of HtrA1 in OV202 induces cell death. HtrA1-induced cell death is not inhibited by the broad caspase inhibitor, zVAD(OMe)fmk, but instead reflects serine protease activity associated with HtrA1. These observations raise the possibility of HtrA1 as a candidate tumor suppressor involved in promoting serine-protease-mediated cell death and that downregulation of HtrA1 in ovarian cancer may contribute to malignant phenotype.


Oncogene | 2004

HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma

Jin Ping Lai; Jeremy Chien; Scott E. Strome; Julie Staub; Damian P. Montoya; Eddie L. Greene; David I. Smith; Lewis R. Roberts; Viji Shridhar

Recently, we cloned a novel sulfatase domain-containing downregulated gene, HSulf-1, which modulates heparin-binding growth factor signaling in ovarian cancer. Based on the pilot data showing the loss of HSulf-1 in head and neck squamous cell carcinoma cell lines (SCCHN), we sought to employ SCCHN as a model to define the role of HSulf-1 in the molecular regulation of tumorigenecity. Three SCCHN lines (012SCC, WMMSCC, and 015SCC) had no detectable HSulf-1 mRNA. Clonal lines of HSulf-1-expressing 012SCC attenuated the activation of ERK/mitogen-activated protein kinase (MAPK) signaling mediated by fibroblast growth factor (FGF-2) and both ERK/MAPK and Akt signaling mediated by hepatocyte growth factor (HGF). Consistent with this downregulation, phosphorylation of HGF receptor, c-Met, which is frequently overexpressed in SCCHN, was also attenuated in HSulf-1 clonal 012SCC cell lines. HGF markedly enhanced the motility and migration of vector-transfected cells in a transwell invasion chamber. However, HGF-mediated motility and invasion was attenuated in HSulf-1 clonal 012SCC cell lines. In addition, transfected cells displayed significant growth inhibition concomitant with a decrease in mitogenecity, as measured by thymidine incorporation and increased sensitivity to staurosporine- and cisplatin-induced apoptosis. These data suggest that HSulf-1 normally functions as a negative regulator in cell growth and loss of HSulf-1 in SCCHN potentiates growth factor signaling, enhances motility, invasiveness and inhibits stress-induced apoptosis, with a resulting increase in tumorigenecity.


Journal of Clinical Investigation | 2006

Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity

Jeremy Chien; Giovanni D. Aletti; Alfonso Baldi; Vincenzo Catalano; Pietro Muretto; Gary L. Keeney; Kimberly R. Kalli; Julie Staub; Michael Ehrmann; William A. Cliby; Yean Kit Lee; Keith C. Bible; Lynn C. Hartmann; Scott H. Kaufmann; Viji Shridhar

Resistance to chemotherapy presents a serious challenge in the successful treatment of various cancers and is mainly responsible for mortality associated with disseminated cancers. Here we show that expression of HtrA1, which is frequently downregulated in ovarian cancer, influences tumor response to chemotherapy by modulating chemotherapy-induced cytotoxicity. Downregulation of HtrA1 attenuated cisplatin- and paclitaxel-induced cytotoxicity, while forced expression of HtrA1 enhanced cisplatin- and paclitaxel-induced cytotoxicity. HtrA1 expression was upregulated by both cisplatin and paclitaxel treatment. This upregulation resulted in limited autoproteolysis and activation of HtrA1. Active HtrA1 induces cell death in a serine protease-dependent manner. The potential role of HtrA1 as a predictive factor of clinical response to chemotherapy was assessed in both ovarian and gastric cancer patients receiving cisplatin-based regimens. Patients with ovarian or gastric tumors expressing higher levels of HtrA1 showed a higher response rate compared with those with lower levels of HtrA1 expression. These findings uncover what we believe to be a novel pathway by which serine protease HtrA1 mediates paclitaxel- and cisplatin-induced cytotoxicity and suggest that loss of HtrA1 in ovarian and gastric cancers may contribute to in vivo chemoresistance.


Cancer Research | 2006

HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.

Keishi Narita; Julie Staub; Jeremy Chien; Kristy Meyer; Maret Bauer; Andreas Friedl; Sundaram Ramakrishnan; Viji Shridhar

We previously identified HSulf-1 as a down-regulated gene in several tumor types including ovarian, breast, and hepatocellular carcinomas. Loss of HSulf-1, which selectively removes 6-O-sulfate from heparan sulfate, up-regulates heparin-binding growth factor signaling and confers resistance to chemotherapy-induced apoptosis. Here we report that HSulf-1 expression in MDA-MB-468 breast carcinoma clonal lines leads to reduced proliferation in vitro and reduced tumor burden in athymic nude mice in vivo. Additionally, xenografts derived from HSulf-1-expressing stable clones of carcinoma cells showed reduced vessel density, marked necrosis, and apoptosis, indicative of inhibition of angiogenesis. Consistent with this observation, HSulf-1-expressing clonal lines showed reduced staining with the endothelial marker CD31 in Matrigel plug assay, indicating that HSulf-1 expression inhibits angiogenesis. More importantly, HSulf-1 expression in the xenografts was associated with a reduced ability of vascular endothelial cell heparan sulfate to participate in a complex with fibroblast growth factor 2 (FGF-2) and its receptor tyrosine kinase FGF receptor 1c. In vitro, short hairpin RNA-mediated down-regulation of HSulf-1 in human umbilical vein endothelial cells (HUVEC) resulted in an increased proliferation mediated by heparan sulfate-dependent FGF-2, hepatocyte growth factor, and vascular endothelial growth factor 165 (VEGF165) but not by heparan sulfate-independent VEGF121. HSulf-1 down-regulation also enhanced downstream signaling through the extracellular signal-regulated kinase pathway compared with untreated cells. Consistent with the role of heparan sulfate glycosaminoglycan sulfation in VEGF-mediated signaling, treatment of HUVEC cells with chlorate, which inhibits heparan sulfate glycosaminoglycan sulfation and therefore mimics HSulf-1 overexpression, led to an attenuated VEGF-mediated signaling. Collectively, these observations provide the first evidence of a novel mechanism by which HSulf-1 modulates the function of heparan sulfate binding VEGF165 in proliferation and angiogenesis.


Oncogene | 2007

Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance

Julie Staub; Jeremy Chien; Xiang Qian; Keishi Narita; Giovanni D. Aletti; M Scheerer; Lewis R. Roberts; Julian R. Molina; Vijayalakshmi Shridhar

To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2′-deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P=0.0146, χ2 test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.


Journal of Biological Chemistry | 2007

Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer.

Keishi Narita; Jeremy Chien; Sally A. Mullany; Julie Staub; Xiang Qian; Wilma L. Lingle; Viji Shridhar

Heparan sulfate (HS) glycosaminoglycans are the oligosaccharide chains of heparan sulfate proteoglycans. The sulfation of HS glycosaminoglycan residues is required for its interaction with various heparin-binding growth factors to promote their biological activities to activate their high affinity receptor tyrosine kinases. We have identified HS glycosaminoglycan-6-O-endosulfatase HSulf-1 as a down-regulated gene in ovarian, breast, and several other cancer cell lines. Here we have shown that HSulf-1 inhibits autocrine activation of the EGFR-ERK (epidermal growth factor receptor-extracellular signal-regulated kinase) pathway induced by serum withdrawal in MDA-MB-468 breast cancer cells. Short hairpin RNA-mediated down-regulation of HSulf-1 in HSulf-1 clonal lines of MDA-MB-468 led to a significant increase in autocrine activation of ERK compared with vector only control. The autocrine signaling was also inhibited with neutralization antibodies against amphiregulin and HB-EGF, the heparin-binding growth factor family of the EGF superfamily. Furthermore, HSulf-1-mediated inhibition of autocrine signaling was associated with reduced cyclin D1 levels, leading to decreased S phase fraction and increased G2–M fraction, as well as increased cell death. Finally, evaluation of HSulf-1 expression levels in primary invasive breast tumors by RNA in situ hybridization indicated that HSulf-1 is down-regulated in the majority (60%) of tumors, with a predominant association with lobular histology. These data suggest a potential role of HSulf-1 down-regulation in mammary carcinogenesis.


Oncogene | 2005

Epigenetic silencing of TCEAL7 (Bex4) in ovarian cancer

Jeremy Chien; Julie Staub; Rajeswari Avula; Heyu Zhang; Wanguo Liu; Lynn C. Hartmann; Scott H. Kaufmann; David I. Smith; Viji Shridhar

Epigenetic silencing by hypermethylation of CpGs represents a mechanism of inactivation of tumor suppressors. Here we report on the cloning of a novel candidate tumor suppressor gene TCEAL7 inactivated by methylation in ovarian cancer. TCEAL codes for a 1.35 kb transcript that was previously reported to be downregulated in ovarian cancer by cDNA microarray and suppression subtraction cDNA (SSH) analyses. This report focuses on the elucidation of mechanisms associated with TCEAL7 downregulation. Expression of TCEAL7 is downregulated in a majority of ovarian tumors and cancer cell lines but induced by 5-aza-2′-deoxycytidine treatment in a dose-dependant manner, implicating methylation as a mechanism of TCEAL7 inactivation. Sequence analyses of bisufite-modified genomic DNA from somatic cell hybrids with either the active or the inactive human X chromosome reveal that TCEAL7 is subjected to X chromosome inactivation. Loss of TCEAL7 expression in primary tumors and cell lines correlates with methylation of a CpG site within the promoter. In vitro methylation of the CpG site suppresses promoter activity whereas selective demethylation of the SmaI site attenuates the suppression. Finally, re-expression of TCEAL7 in cancer cell lines induces cell death and reduces colony formation efficiency. These data implicate TCEAL7 as a cell death regulatory protein that is frequently inactivated in ovarian cancers, and suggest that it may function as a tumor suppressor.


Oncogene | 1999

A novel region of deletion on chromosome 6q23.3 spanning less than 500 Kb in high grade invasive epithelial ovarian cancer.

Viji Shridhar; Julie Staub; Brenda K. Huntley; William A. Cliby; Robert B. Jenkins; Harvey I. Pass; Lynn C. Hartmann; David I. Smith

Detailed deletion mapping of chromosome 6q sequences in invasive ovarian tumors have implicated several broad regions involving 6q14 – 16, 6q21 – 23, 6q25 – 26, and the telomeric portion in band 6q27 as regions of frequent loss in this malignancy. In order to define regions of loss involved in the development of ovarian cancer, we used 23 polymorphic markers on 6q to examine allelic loss in 25 high-grade, late stage ovarian tumors. Four non-overlapping deletion regions were observed: (1) at 6q21 – 22.3 (D6S301-D6S292); (2) within a 1 cM region at 23.2 – 23.3 between markers D6S978-D6S1637 (at D6S311); (3) at 6q26 (between markers D6S411-D6S1277) and (4) at 6q27 with the markers D6S297 and D6S193. The highest region of loss was observed with marker D6S311 (lost in 17 of 19 informative cases, 89%) in 6q23.3, followed by D6S977 and D6S1637 (71 and 55%, respectively). The average fractional allele loss in the high-grade tumors was around 35%. Previous reports have shown 6q27 as the region of most frequent loss in invasive ovarian cancer. However, our results indicate a novel region in 6q23.3 (spanning less than 500 Kb distance between the markers) with the highest loss, implicating this region of chromosome 6q to harbor a putative tumor suppressor gene involved in the development of invasive epithelial ovarian cancer.


Clinical Cancer Research | 2010

Methylation Induced Gene Silencing of HtrA3 in Smoking-Related Lung Cancer

Daniah Beleford; Zhixue Liu; Ramandeep Rattan; Lucio Quagliuolo; Mariarosaria Boccellino; Alfonso Baldi; Jacie Maguire; Julie Staub; Julian R. Molina; Viji Shridhar

Purpose: Some 85% of lung cancers are smoking related. Here, we investigate the role of serine protease HtrA3 in smoking-related lung cancer. Experimental Design: We assess HtrA3 methylation and its corresponding expression in the human bronchial cell line BEAS-2B following cigarette smoke carcinogen treatment, in lung cancer cell lines and in primary lung tumors from light, moderate, and heavy smokers. We also show the effects of HtrA3 downregulation on MTT reduction and clonogenic survival with etoposide and cisplatin treatment and the corresponding effects of HtrA3 re-expression during treatment. Results: We show for the first time that HtrA3 expression is reduced or completely lost in over 50% of lung cancer cell lines and primary lung tumors from heavy smokers. Treatment of HtrA3-deficient cell lines with 5-aza-2′-deoxycytidine resulted in a dose-dependent increase in HtrA3 transcription. Further, sequence analysis of bisulfite-modified DNA from lung cancer cell lines and from primary lung tumors showed an increased frequency of methylation within the first exon of HtrA3 with a corresponding loss of HtrA3 expression, particularly in tumors from smokers. In BEAS-2B, treatment with the cigarette smoke carcinogen 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone resulted in HtrA3 downregulation with a corresponding increase in methylation. Additional studies indicate resistance to etoposide and cisplatin cytotoxicity as a functional consequence of HtrA3 loss. Finally, immunohistochemical analysis of primary lung tumors revealed a strong correlation between low HtrA3 expression and heavy smoking history. Conclusions: Collectively, these results suggest that cigarette smoke–induced methylation of HtrA3 could contribute to the etiology of chemoresistant disease in smoking-related lung cancer. Clin Cancer Res; 16(2); 398–409


Oncogene | 2008

A role for candidate tumor-suppressor gene TCEAL7 in the regulation of c-Myc activity, cyclin D1 levels and cellular transformation.

Jeremy Chien; Keishi Narita; Ramandeep Rattan; S Giri; Ravi Shridhar; Julie Staub; Daniah Beleford; Jinping Lai; Lewis R. Roberts; Julian R. Molina; Scott H. Kaufmann; George C. Prendergast; Vijayalakshmi Shridhar

The pathophysiological mechanisms that drive the development and progression of epithelial ovarian cancer remain obscure. Recently, we identified TCEAL7 as a transcriptional regulatory protein often downregulated in epithelial ovarian cancer. However, the biological significance of such downregulation in cancer is not currently known. Here, we show that TCEAL7 is downregulated frequently in many human cancers and that in immortalized human ovarian epithelial cells this event promotes anchorage-independent cell growth. Mechanistic investigations revealed that TCEAL7 associates with cyclin D1 promoter containing Myc E-box sequence and transcriptionally represses cyclin D1 expression. Moreover, downregulation of TCEAL7 promotes DNA-binding activity of Myc-Max, and upregulates the promoter activity of c-Myc-target gene, ornithine decarboxylase (ODC), whereas enhanced expression of TCEAL7 inhibits Myc-induced promoter activity of ODC. Our findings suggest that TCEAL7 may restrict ovarian epithelial cell transformation by limiting Myc activity. These results also suggest a potential, alternative mechanism by which c-Myc activity may be deregulated in cancer by the downregulation of TCEAL7.

Collaboration


Dive into the Julie Staub's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge