Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy D. Brown is active.

Publication


Featured researches published by Jeremy D. Brown.


Nucleic Acids Research | 2009

The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome.

Claudia Schneider; Eileen Leung; Jeremy D. Brown; David Tollervey

Nuclear and cytoplasmic forms of the yeast exosome share 10 components, of which only Rrp44/Dis3 is believed to possess 3′ exonuclease activity. We report that expression only of Rrp44 lacking 3′-exonuclease activity (Rrp44-exo) supports growth in S288c-related strains (BY4741). In BY4741, rrp44-exo was synthetic-lethal with loss of the cytoplasmic 5′-exonuclease Xrn1, indicating block of mRNA turnover, but not with loss of the nuclear 3′-exonuclease Rrp6. The RNA processing phenotype of rrp44-exo was milder than that seen on Rrp44 depletion, indicating that Rrp44-exo retains important functions. Recombinant Rrp44 was shown to possess manganese-dependent endonuclease activity in vitro that was abolished by four point mutations in the putative metal binding residues of its N-terminal PIN domain. Rrp44 lacking both exonuclease and endonuclease activity failed to support growth in strains depleted of endogenous Rrp44. Strains expressing Rrp44-exo and Rrp44-endo–exo exhibited different RNA processing patterns in vivo suggesting Rrp44-dependent endonucleolytic cleavages in the 5′-ETS and ITS2 regions of the pre-rRNA. Finally, the N-terminal PIN domain was shown to be necessary and sufficient for association with the core exosome, indicating its dual function as a nuclease and structural element.


Journal of Biological Chemistry | 2003

Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide.

Pablo de Felipe; Lorraine E. Hughes; Martin D. Ryan; Jeremy D. Brown

During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foot-and-mouth disease virus. We find that the scission reaction is unaffected by placing 2A into a co-translationally targeted protein. Moreover, the portion of the polypeptide C-terminal to the cleavage site remains in the cytosol unless it contains its own signal sequence. The pattern of cleavage is consistent with the proposal that the 2A-mediated cleavage reaction occurs within the ribosome itself. In addition, our data indicate that the ribosome-translocon complex detects the break in the nascent chain and prevents any downstream protein lacking a signal sequence from gaining access to the endoplasmic reticulum.


The EMBO Journal | 1994

Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression.

Jeremy D. Brown; Byron Hann; K. F. Medzihradszky; Maho Niwa; Alma L. Burlingame; Peter Walter

The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP.


Molecular and Cellular Biology | 2008

Site-specific release of nascent chains from ribosomes at a sense codon

Victoria A. Doronina; Cheng Wu; Pablo de Felipe; Matthew S. Sachs; Martin D. Ryan; Jeremy D. Brown

ABSTRACT “2A” oligopeptides are autonomous elements containing a D(V/I)EXNPGP motif at the C terminus. Protein synthesis from an open reading frame containing an internal 2A coding sequence yields two separate polypeptides, corresponding to sequences up to and including 2A and those downstream. We show that the 2A reaction occurs in the ribosomal peptidyltransferase center. Ribosomes pause at the end of the 2A coding sequence, over the glycine and proline codons, and the nascent chain up to and including this glycine is released. Translation-terminating release factors eRF1 and eRF3 play key roles in the reaction. On the depletion of eRF1, a greater proportion of ribosomes extend through the 2A coding sequence, yielding the full-length protein. In contrast, impaired eRF3 GTPase activity leads to many ribosomes failing to translate beyond 2A. Further, high-level expression of a 2A peptide-containing protein inhibits the growth of cells compromised for release factor activity and leads to errors in stop codon recognition. We propose that the nascent 2A peptide interacts with ribosomes to drive a highly unusual and specific “termination” reaction, despite the presence of a proline codon in the A site. After this, the majority of ribosomes continue translation, generating the separate downstream product.


The EMBO Journal | 2000

Elongation arrest is a physiologically important function of signal recognition particle

Nicola Mason; Leonora F. Ciufo; Jeremy D. Brown

Signal recognition particle (SRP) targets proteins for co‐translational insertion through or into the endoplasmic reticulum membrane. Mammalian SRP slows nascent chain elongation by the ribosome during targeting in vitro. This ‘elongation arrest’ activity requires the SRP9/14 subunit of the particle and interactions of the C‐terminus of SRP14. We have purified SRP from Saccharomyces cerevisiae and demonstrated that it too has elongation arrest activity. A yeast SRP containing Srp14p truncated at its C‐terminus (ΔC29) did not maintain elongation arrest, was substantially deficient in promoting translocation and interfered with targeting by wild‐type SRP. In vivo, this mutation conferred a constitutive defect in the coupling of protein translation and translocation and temperature‐sensitive growth, but only a slight defect in protein translocation. In combination, these data indicate that the primary defect in SRP ΔC29 is in elongation arrest, and that this is a physiologically important and conserved function of eukaryotic SRP.


The EMBO Journal | 1992

Roles of PRP8 protein in the assembly of splicing complexes.

Jeremy D. Brown; Jean D. Beggs

Three different approaches have been used to investigate the roles of the yeast U5 snRNP protein PRP8 in spliceosome assembly: genetic depletion of PRP8 protein in vivo, heat inactivation of temperature‐sensitive prp8 protein in protoplasts and inhibition of PRP8 function with antibodies in vitro. In each case, U5 and U4/U6 snRNPs failed to assemble into the forming spliceosomes. In addition, extract prepared from PRP8‐depleted cells and extract containing inactivated PRP8 protein had substantially reduced amounts of U4/U6.U5 triple snRNP complexes. Thus, functional PRP8 protein is required for the stable formation of U4/U6.U5 complexes without which spliceosomes fail to form. As spliceosome formation was also blocked by anti‐PRP8 antibodies that apparently do not disrupt triple snRNPs, PRP8 protein may play a separate role in the assembly of triple snRNPs into spliceosomes. As a consequence of PRP8 depletion the levels of the U4, U5 and U6 snRNAs declined dramatically. We discuss this in the context of the known genetic interactions between PRP8 and putative RNA helicase (DEAD box protein) genes and propose that PRP8 protein plays a role in regulating dynamic RNA‐RNA interactions in spliceosome assembly, possibly ensuring the correct directionality of these events.


Biotechnology Journal | 2010

Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences

Pablo de Felipe; Garry A. Luke; Jeremy D. Brown; Martin D. Ryan

Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl–prolyl peptide bond at the C‐terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and ‘2A‐like’ sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co‐ and post‐translationally targeted to a variety of sub‐cellular sites. In the case of polyproteins bearing N‐terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of ‘slipstream’ translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N‐terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C‐terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins.


Current Biology | 2000

Nuclear export of yeast signal recognition particle lacking Srp54p by the Xpo1p/Crm1p NES-dependent pathway

Leonora F. Ciufo; Jeremy D. Brown

Abstract Background: The movement of macromolecules through the nuclear pores requires energy and transport receptors that bind both cargo and nuclear pores. Different molecules/complexes often require different transport receptors. The signal recognition particle (SRP) is a conserved cytosolic ribonucleoprotein that targets proteins to the endoplasmic reticulum. Previous studies have shown that the export of SRP RNA from the nucleus requires trans -acting factors and that SRP may be at least partly assembled in the nucleus, but little else is known about how it is assembled and exported into the cytoplasm. Results: Of the six proteins that constitute the yeast SRP, we found that all except Srp54p were imported into the nucleus. Four of these had nucleolar pools. The same four proteins are required for stability of the yeast SRP RNA scR1, suggesting that they assemble with the RNA in the nucleus to form a central core SRP. This core SRP was a competent export substrate. Of the remaining components, Sec65p entered the nucleus and was assembled onto the core particle there, whereas Srp54p was solely cytoplasmic. The export of SRP from the nucleus required the transport receptor Xpo1p/Crm1p and Yrb2p, both components of the pathway that exports leucine-rich nuclear export signal (NES)-containing proteins from the nucleus. Conclusions: The SRP is assembled in the nucleus into a complex lacking only Srp54p. It is then exported through the NES pathway into the cytoplasm where Srp54p binds to it. This transport route for a ribonucleoprotein complex is so far unique in yeast.


Nucleic Acids Research | 2012

2A peptides provide distinct solutions to driving stop-carry on translational recoding

Pamila Sharma; Fu Yan; Victoria A. Doronina; Helena Escuin-Ordinas; Martin D. Ryan; Jeremy D. Brown

Expression of viral proteins frequently includes non-canonical decoding events (‘recoding’) during translation. ‘2A’ oligopeptides drive one such event, termed ‘stop-carry on’ recoding. Nascent 2A peptides interact with the ribosomal exit tunnel to dictate an unusual stop codon-independent termination of translation at the final Pro codon of 2A. Subsequently, translation ‘reinitiates’ on the same codon, two individual proteins being generated from one open reading frame. Many 2A peptides have been identified, and they have a conserved C-terminal motif. Little similarity is present in the N-terminal portions of these peptides, which might suggest that these amino acids are not important in the 2A reaction. However, mutagenesis indicates that identity of the amino acid at nearly all positions of a single 2A peptide is important for activity. Each 2A may then represent a specific solution for positioning the conserved C-terminus within the peptidyl-transferase centre to promote recoding. Nascent 2A peptide:ribosome interactions are suggested to alter ribosomal fine structure to discriminate against prolyl-tRNAPro and promote termination in the absence of a stop codon. Such structural modifications may account for our observation that replacement of the final Pro codon of 2A with any stop codon both stalls ribosome processivity and inhibits nascent chain release.


Clinical & Experimental Allergy | 2002

Transforming growth factor‐bβ1 mediates coexpression of the integrin subunit aαE and the chymase mouse mast cell protease‐1 during the early differentiation of bone marrow‐derived mucosal mast cell homologues

Steven H. Wright; Jeremy D. Brown; Pamela A. Knight; Elizabeth M. Thornton; P. J. Kilshaw; H. R. P. Miller

Mucosal mast cells (MMC) play a central role in gut hypersensitivities and inflammation. They are morphologically, biochemically and functionally distinct from their connective tissue counterparts. Massive hyperplasia of MMC occurs 7–10 days after intestinal infection with nematodes but it has never been possible to replicate this phenomenon in vitro.

Collaboration


Dive into the Jeremy D. Brown's collaboration.

Top Co-Authors

Avatar

Martin D. Ryan

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Tong

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar

Garry A. Luke

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge