Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo de Felipe is active.

Publication


Featured researches published by Pablo de Felipe.


Journal of Biological Chemistry | 2003

Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide.

Pablo de Felipe; Lorraine E. Hughes; Martin D. Ryan; Jeremy D. Brown

During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foot-and-mouth disease virus. We find that the scission reaction is unaffected by placing 2A into a co-translationally targeted protein. Moreover, the portion of the polypeptide C-terminal to the cleavage site remains in the cytosol unless it contains its own signal sequence. The pattern of cleavage is consistent with the proposal that the 2A-mediated cleavage reaction occurs within the ribosome itself. In addition, our data indicate that the ribosome-translocon complex detects the break in the nascent chain and prevents any downstream protein lacking a signal sequence from gaining access to the endoplasmic reticulum.


Molecular and Cellular Biology | 2008

Site-specific release of nascent chains from ribosomes at a sense codon

Victoria A. Doronina; Cheng Wu; Pablo de Felipe; Matthew S. Sachs; Martin D. Ryan; Jeremy D. Brown

ABSTRACT “2A” oligopeptides are autonomous elements containing a D(V/I)EXNPGP motif at the C terminus. Protein synthesis from an open reading frame containing an internal 2A coding sequence yields two separate polypeptides, corresponding to sequences up to and including 2A and those downstream. We show that the 2A reaction occurs in the ribosomal peptidyltransferase center. Ribosomes pause at the end of the 2A coding sequence, over the glycine and proline codons, and the nascent chain up to and including this glycine is released. Translation-terminating release factors eRF1 and eRF3 play key roles in the reaction. On the depletion of eRF1, a greater proportion of ribosomes extend through the 2A coding sequence, yielding the full-length protein. In contrast, impaired eRF3 GTPase activity leads to many ribosomes failing to translate beyond 2A. Further, high-level expression of a 2A peptide-containing protein inhibits the growth of cells compromised for release factor activity and leads to errors in stop codon recognition. We propose that the nascent 2A peptide interacts with ribosomes to drive a highly unusual and specific “termination” reaction, despite the presence of a proline codon in the A site. After this, the majority of ribosomes continue translation, generating the separate downstream product.


Traffic | 2004

Targeting of Proteins Derived from Self-Processing Polyproteins Containing Multiple Signal Sequences

Pablo de Felipe; Martin D. Ryan

The 18aa 2A self‐cleaving oligopeptide from foot‐and‐mouth disease virus can be used for co‐expression of multiple, discrete proteins from a single ORF. 2A mediates a co‐translational cleavage at its own C‐terminus and is proposed to manipulate the ribosome into skipping the synthesis of a specific peptide bond (producing a discontinuity in the peptide backbone), rather than being involved in proteolysis. To explore the utility of the system to target discrete processing products, self‐processing polyproteins comprising fluorescent proteins flanking 2A were constructed, permutating both the type of signal sequence and the location within the polyprotein. A polyprotein comprising a protein bearing an N‐terminal signal sequence, 2A, then a protein lacking any signal sequence, was constructed. Interestingly, both proteins were translocated into the endoplasmic reticulum. Despite the discontinuity in the peptide backbone, the mammalian ribosome:translocon complex did not disassemble – the second protein (lacking any signal) ‘slipstreamed’ through the translocon formed by the first (signal‐bearing) protein. These polyprotein systems provide a novel method of targeting proteins to different subcellular sites by transfection with a plasmid encoding a single ORF. The inclusion of a fluorescent reporter enables visualisation of expression levels, whilst inclusion of a selectable marker enables stable cell‐lines to be established rapidly.


Genetic Vaccines and Therapy | 2004

Skipping the co-expression problem: the new 2A "CHYSEL" technology

Pablo de Felipe

The rapid progress in the field of genomics is increasing our knowledge of multi-gene diseases. However, any realistic hope of gene therapy treatment for those diseases needs first to address the problem of co-ordinately co-expressing several transgenes. Currently, the use of internal ribosomal entry sites (IRESs) is the strategy chosen by many researchers to ensure co-expression. The large sizes of the IRESs (~0.5 kb), and the difficulties of ensuring a well-balanced co-expression, have prompted several researchers to imitate a co-expression strategy used by many viruses: to express several proteins as a polyprotein. A small peptide of 18 amino acids (2A) from the foot-and-mouth disease virus (FMDV) is being used to avoid the need of proteinases to process the polyprotein. FMDV 2A is introduced as a linker between two proteins to allow autonomous intra-ribosomal self-processing of polyproteins. Recent reports have shown that this sequence is compatible with different sub-cellular targeting signals and can be used to co-express up to four proteins from a single retroviral vector. This short peptide provides a tool to allow the co-expression of multiple proteins from a single vector, a useful technology for those working with heteromultimeric proteins, biochemical pathways or combined/synergistic phenomena.The rapid progress in the field of genomics is increasing our knowledge of multi-gene diseases. However, any realistic hope of gene therapy treatment for those diseases needs first to address the problem of co-ordinately co-expressing several transgenes. Currently, the use of internal ribosomal entry sites (IRESs) is the strategy chosen by many researchers to ensure co-expression. The large sizes of the IRESs (~0.5 kb), and the difficulties of ensuring a well-balanced co-expression, have prompted several researchers to imitate a co-expression strategy used by many viruses: to express several proteins as a polyprotein. A small peptide of 18 amino acids (2A) from the foot-and-mouth disease virus (FMDV) is being used to avoid the need of proteinases to process the polyprotein. FMDV 2A is introduced as a linker between two proteins to allow autonomous intra-ribosomal self-processing of polyproteins. Recent reports have shown that this sequence is compatible with different sub-cellular targeting signals and can be used to co-express up to four proteins from a single retroviral vector. This short peptide provides a tool to allow the co-expression of multiple proteins from a single vector, a useful technology for those working with heteromultimeric proteins, biochemical pathways or combined/synergistic phenomena.


Journal of General Virology | 2008

Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes

Garry A. Luke; Pablo de Felipe; Alexander N. Lukashev; Susanna E. Kallioinen; Elizabeth A. Bruno; Martin D. Ryan

2A is an oligopeptide sequence mediating a ribosome ‘skipping’ effect, producing an apparent ‘cleavage’ of polyproteins. First identified and characterized in picornaviruses, ‘2A-like’ sequences are found in other mammalian viruses and a wide range of insect viruses. Databases were analysed using a motif conserved amongst 2A/2A-like sequences. The newly identified 2A-like sequences (30 aa) were inserted into a reporter polyprotein to determine their cleavage activity. Our analyses showed that these sequences fall into two categories. The majority mediated very high (complete) cleavage to separate proteins and a few sequences mediated cleavage with lower efficiency, generating appreciable levels of the uncleaved form. Phylogenetic analyses of 2A-like sequences and RNA-dependent RNA polymerases (RdRps) indicated multiple, independent, acquisitions of these sequences at different stages during virus evolution. Within a virus family, 2A sequences are (probably) homologous, but diverge due to other evolutionary pressures. Amongst different families, however, 2A/2A-like sequences appear to be homoplasic.


Biotechnology Journal | 2010

Inhibition of 2A-mediated 'cleavage' of certain artificial polyproteins bearing N-terminal signal sequences

Pablo de Felipe; Garry A. Luke; Jeremy D. Brown; Martin D. Ryan

Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl–prolyl peptide bond at the C‐terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and ‘2A‐like’ sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co‐ and post‐translationally targeted to a variety of sub‐cellular sites. In the case of polyproteins bearing N‐terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of ‘slipstream’ translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N‐terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C‐terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins.


Journal of General Virology | 2008

Expression of heterologous genes in oncolytic adenoviruses using picornaviral 2A sequences that trigger ribosome skipping

Garth Funston; Susanna E. Kallioinen; Pablo de Felipe; Martin D. Ryan; Richard Iggo

Insertion of picornaviral 2A sequences into mRNAs causes ribosomes to skip formation of a peptide bond at the junction of the 2A and downstream sequences, leading to the production of two proteins from a single open reading frame. Adenoviral protein IX is a minor capsid protein that has been used to display foreign peptides on the surface of the capsid. We have used 2A sequences from the foot-and-mouth disease virus (FMDV) and porcine teschovirus 1 (PTV-1) to express protein IX (pIX) and green fluorescent protein (GFP) from pIX-2A-GFP fusion genes in an oncolytic virus derived from human adenovirus 5. GFP was efficiently expressed by constructs containing either 2A sequence. Peptide bond skipping was more efficient with the 58 aa FMDV sequence than with the 22 aa PTV-1 2A sequence, but the virus with the FMDV 2A sequence showed a reduction in plaque size, cytopathic effect, viral burst size and capsid stability. We conclude that ribosome skipping induced by 2A sequences is an effective strategy to express heterologous genes in adenoviruses; however, careful selection or optimization of the 2A sequence may be required if protein IX is used as the fusion partner.


Biotechnology & Genetic Engineering Reviews | 2009

2A to the fore - research, technology and applications.

Garry A. Luke; Helena Escuin; Pablo de Felipe; Martin D. Ryan

Abstract The 2A region of the foot-and-mouth disease virus (FMDV) encodes a short sequence that mediates self-processing by a novel translational effect. Translation elongation arrest leads to release of the nascent polypeptide and re-initiation at the next in-frame codon. In this way discrete translation products are derived from a single open read-size of 2A peptides compared to internal promoters or IRES sequences makes them ideal candidates for use in size-restricted viral and nonviral vectors. Additionally, the diversity of the 2A sequence minimizes the chances for homologous recombination which is an important consideration when using retroviral or lentiviral systems. One outstanding question is the effect of the 2A “tag” attached to the C-terminus of the upstream protein. This may interfere with function, or more importantly may present a new epitope that could be subject to immunological surveillance. However, the attachment of extra amino acids is a routine method for labelling transgene products while leaving their function intact (e.g. tags such as the His tag and Myc tag). To our knowledge, the 2A tag does not impair activity and expression - proteins that require authentic termini, or are N-/C- terminally modified, can be introduced as the first or final polyprotein domain, respectively. In any event, strategies have now been devised that allow removal of the 2A linker (see François et al., 2004; Fang et al., 2005). The “unwanted” tag may however stick – antibodies directed against 2A can be used to detect the gene cloned upstream (Ryan and Drew, 1994; de Felipe et al., 2003, 2006). Lastly, the presence of a proline residue at the N-terminus of the downstream protein, as a relict of the 2A self-cleaving process, does not normally interfere with function – it does, however, confer high protein stability (Varshavsky, 1992). Aware of the factors that influence expression levels it is important to empirically design any co-expression cassette to ensure the polyprotein is the most suitable arrangement in respect to desired function. As a form of control of protein biogenesis, 2A sequences are much more wide-spread than was first suspected. To appease different and opposing sensibilities, 2A variants that are not found in mammalian viruses can be used just as effectively for the production of multiple protein products. Although a relative new-kid-on-the-block in terms of co-expression studies, 2A can safely be considered an “established” player. It is clear that assorted 2A-derived proteins with diverse and distinct localized functions may be stably expressed in several different cell types demonstrating the applicability of this technology in biomedicine and biotechnology. The biotechnological applications of 2A are continually updated on www.st-andrews.ac.uk/ryanlab/Index.htm We envisage that 2A technology will become one of the predominant strategies for multigene delivery in the coming years.


Traffic | 2016

2A-like signal sequences mediating translational recoding : a novel form of dual protein targeting

Claire Roulston; Garry A. Luke; Pablo de Felipe; Lin Ruan; Jonathan Cope; John Nicholson; Andriy Sukhodub; Jens Tilsner; Martin D. Ryan

We report the initial characterization of an N‐terminal oligopeptide ‘2A‐like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A‐mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A‐like N‐terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A‐mediated translational recoding has occurred: the 2A‐like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A‐like signal sequence and is localized to the cytoplasm. This type of dual‐functional signal sequence results, therefore, in the partitioning of the translation products between the two sub‐cellular sites and represents a newly described form of dual protein targeting.


Molecular Biology and Evolution | 2013

APE-Type Non-LTR Retrotransposons of Multicellular Organisms Encode Virus-Like 2A Oligopeptide Sequences, Which Mediate Translational Recoding during Protein Synthesis

Valerie Odon; Garry A. Luke; Claire Roulston; Pablo de Felipe; Lin Ruan; Helena Escuin-Ordinas; Jeremy D. Brown; Martin D. Ryan; Andriy Sukhodub

2A oligopeptide sequences (“2As”) mediate a cotranslational recoding event termed “ribosome skipping.” Previously we demonstrated the activity of 2As (and “2A-like sequences”) within a wide range of animal RNA virus genomes and non-long terminal repeat retrotransposons (non-LTRs) in the genomes of the unicellular organisms Trypanosoma brucei (Ingi) and T. cruzi (L1Tc). Here, we report the presence of 2A-like sequences in the genomes of a wide range of multicellular organisms and, as in the trypanosome genomes, within non-LTR retrotransposons (non-LTRs)—clustering in the Rex1, Crack, L2, L2A, and CR1 clades, in addition to Ingi. These 2A-like sequences were tested for translational recoding activity, and highly active sequences were found within the Rex1, L2, CR1, and Ingi clades. The presence of 2A-like sequences within non-LTRs may not only represent a method of controlling protein biogenesis but also shows some correlation with such apurinic/apyrimidinic DNA endonuclease-type non-LTRs encoding one, rather than two, open reading frames (ORFs). Interestingly, such non-LTRs cluster with closely related elements lacking 2A-like recoding elements but retaining ORF1. Taken together, these observations suggest that acquisition of 2A-like translational recoding sequences may have played a role in the evolution of these elements.

Collaboration


Dive into the Pablo de Felipe's collaboration.

Top Co-Authors

Avatar

Martin D. Ryan

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Garry A. Luke

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie Odon

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Lin Ruan

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge