Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy D. Henson is active.

Publication


Featured researches published by Jeremy D. Henson.


Oncogene | 2002

Alternative lengthening of telomeres in mammalian cells.

Jeremy D. Henson; Axel A. Neumann; Thomas R. Yeager; Roger R. Reddel

Some immortalized mammalian cell lines and tumors maintain or increase the overall length of their telomeres in the absence of telomerase activity by one or more mechanisms referred to as alternative lengthening of telomeres (ALT). Characteristics of human ALT cells include great heterogeneity of telomere size (ranging from undetectable to abnormally long) within individual cells, and ALT-associated PML bodies (APBs) that contain extrachromosomal telomeric DNA, telomere-specific binding proteins, and proteins involved in DNA recombination and replication. Activation of ALT during immortalization involves recessive mutations in genes that are as yet unidentified. Repressors of ALT activity are present in normal cells and some telomerase-positive cells. Telomere length dynamics in ALT cells suggest a recombinational mechanism. Inter-telomeric copying occurs, consistent with a mechanism in which single-stranded DNA at one telomere terminus invades another telomere and uses it as a copy template resulting in net increase in telomeric sequence. It is possible that t-loops, linear and/or circular extrachromosomal telomeric DNA, and the proteins found in APBs, may be involved in the mechanism. ALT and telomerase activity can co-exist within cultured cells, and within tumors. The existence of ALT adds some complexity to proposed uses of telomere-related parameters in cancer diagnosis and prognosis, and poses challenges for the design of anticancer therapeutics designed to inhibit telomere maintenance.


Nature Biotechnology | 2009

DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity

Jeremy D. Henson; Ying Cao; Lily I. Huschtscha; Andrew C. Chang; Amy Y.M. Au; Hilda A. Pickett; Roger R. Reddel

Alternative lengthening of telomeres (ALT) is likely to be an important target for anticancer treatment as ∼10% of cancers depend on this telomere maintenance mechanism for continued growth, and inhibition of ALT can cause cellular senescence. However, no ALT inhibitors have been developed for therapeutic use because of the lack of a suitable ALT activity assay and of known ALT-specific target molecules. Here we show that partially single-stranded telomeric (CCCTAA)n DNA circles (C-circles) are ALT specific. We provide an assay that is rapidly and linearly responsive to ALT activity and that is suitable for screening for ALT inhibitors. We detect C-circles in blood from ALT+ osteosarcoma patients, suggesting that the C-circle assay (CC assay) may have clinical utility for diagnosis and management of ALT+ tumors.


FEBS Letters | 2010

Assaying and investigating Alternative Lengthening of Telomeres activity in human cells and cancers

Jeremy D. Henson; Roger R. Reddel

Alternative Lengthening of Telomeres (ALT) activity can be deduced from the presence of telomere length maintenance in the absence of telomerase activity. More convenient assays for ALT utilize phenotypic markers of ALT activity, but only a few of these assays are potentially definitive. Here we assess each of the current ALT assays and their implications for understanding the ALT mechanism. We also review the clinical situations where availability of an ALT activity assay would be advantageous. The prevalence of ALT ranges from 25% to 60% in sarcomas and 5% to 15% in carcinomas. Patients with many of these types of ALT[+] tumors have a poor prognosis.


Molecular and Cellular Biology | 2005

Suppression of Alternative Lengthening of Telomeres by Sp100-Mediated Sequestration of the MRE11/RAD50/NBS1 Complex

Wei-Qin Jiang; Ze-Huai Zhong; Jeremy D. Henson; Axel A. Neumann; Andrew C. Chang; Roger R. Reddel

ABSTRACT Approximately 10% of cancers overall use alternative lengthening of telomeres (ALT) instead of telomerase to prevent telomere shortening, and ALT is especially common in astrocytomas and various types of sarcomas. The hallmarks of ALT in telomerase-negative cancer cells include a unique pattern of telomere length heterogeneity, rapid changes in individual telomere lengths, and the presence of ALT-associated promyelocytic leukemia bodies (APBs) containing telomeric DNA and proteins involved in telomere binding, DNA replication, and recombination. The ALT mechanism appears to involve recombination-mediated DNA replication, but the molecular details are largely unknown. In telomerase-null Saccharomyces cerevisiae, an analogous survivor mechanism is dependent on the RAD50 gene. We demonstrate here that overexpression of Sp100, a constituent of promyelocytic leukemia nuclear bodies, sequestered the MRE11, RAD50, and NBS1 recombination proteins away from APBs. This resulted in repression of the ALT mechanism, as evidenced by progressive telomere shortening at 121 bp per population doubling, a rate within the range found in telomerase-negative normal cells, suppression of rapid telomere length changes, and suppression of APB formation. Spontaneously generated C-terminally truncated Sp100 that did not sequester the MRE11, RAD50, and NBS1 proteins failed to inhibit ALT. These findings identify for the first time proteins that are required for the ALT mechanism.


Cancer Research | 2006

Telomere Maintenance Mechanisms in Liposarcomas: Association with Histologic Subtypes and Disease Progression

Aurora Costa; Maria Grazia Daidone; Laura Daprai; Raffaella Villa; Sabrina Cantù; Silvana Pilotti; Luigi Mariani; Alessandro Gronchi; Jeremy D. Henson; Roger R. Reddel; Nadia Zaffaroni

Human cancer cells maintain telomeres by telomerase activity (TA) or by alternative lengthening of telomeres (ALT). We proposed to define the prevalence of the two telomere maintenance mechanisms (TMM), to assess their association with histology, and to compare their prognostic relevance in a series of 93 patients with liposarcoma. ALT was detected by assaying ALT-associated promyelocytic leukemia nuclear bodies and TA was assayed using the telomeric repeat amplification protocol. ALT or TA was found in 25.9% or 26.6% of 139 tested liposarcoma lesions, respectively. Three lesions were ALT+/TA+ whereas approximately 50% of lesions did not show any known TMM. TMM phenotype was consistent during disease progression. ALT was prevalent in dedifferentiated and in grade 3 liposarcomas whereas TA prevailed in most round-cell myxoid and in grade 2 liposarcomas. ALT and TA incidence was similar in primary and recurrent lesions whereas metastases were more frequently TA+ than ALT+ (59% versus 18%; P = 0.04). TMM presence negatively affected patient prognosis (P = 0.001): increased mortality was associated with positivity for TA (P = 0.038) or ALT (P < 0.0001) compared with TMM absence. ALT proved to be a stronger prognostic discriminant of increased mortality than TA even when adjusted for tumor location, grade, and histology (hazard ratio for cause-specific death, 3.58 versus 1.15). Our results indicate that ALT can support fully malignant liposarcomas and is associated with unfavorable disease outcome.


Oncogene | 2007

Identification of candidate alternative lengthening of telomeres genes by methionine restriction and RNA interference.

Wei-Qin Jiang; Ze-Huai Zhong; Jeremy D. Henson; Roger R. Reddel

Telomerase-negative cancer cells can maintain their telomeres by a recombination-mediated alternative lengthening of telomeres (ALT) process. We reported previously that sequestration of MRE11/RAD50/NBS1 complexes represses ALT-mediated telomere length maintenance, and suppresses formation of ALT-associated promyelocytic leukemia (PML) bodies (APBs). APBs are PML bodies containing telomeric DNA and telomere-binding proteins, and are observed only in a small fraction of cells within asynchronously dividing ALT-positive cell populations. Here, we report that methionine restriction caused a reversible arrest in G0/G1 phase of the cell cycle and reversible induction of APB formation in most cells within an ALT-positive population. We combined methionine restriction with RNA interference to test whether the following proteins are required for APB formation: PML body-associated proteins, PML and Sp100; telomere-associated proteins, TRF1, TRF2, TIN2 and RAP1; and DNA repair proteins, MRE11, RAD50, NBS1 and 53BP1. APB formation was not decreased by depletion of Sp100 (as reported previously) or of 53BP1, although 53BP1 partially colocalizes with APBs. Depletion of the other proteins suppressed APB formation. Because of the close linkage between ALT-mediated telomere maintenance and ability to form APBs, the eight proteins identified by this screen as being required for APB formation are also likely to be required for the ALT mechanism.


Journal of Neuropathology and Experimental Neurology | 2010

Presence of alternative lengthening of telomeres mechanism in patients with glioblastoma identifies a less aggressive tumor type with longer survival.

Kerrie L. McDonald; Julie McDonnell; Alessandra Muntoni; Jeremy D. Henson; Monika E. Hegi; Andreas von Deimling; Helen Wheeler; Ray J. Cook; Michael Biggs; Nicholas S. Little; Bruce G. Robinson; Roger R. Reddel; Janice A. Royds

Patients with glioblastoma (GBM) have variable clinical courses, but the factors that underlie this heterogeneity are not understood. To determine whether the presence of the telomerase-independent alternative lengthening of telomeres (ALTs) mechanism is a significant prognostic factor for survival, we performed a retrospective analysis of 573 GBM patients. The presence of ALT was identified in paraffin sections using a combination of immunofluorescence for promyelocytic leukemia body and telomere fluorescence in situ hybridization. Alternative lengthening of telomere was present in 15% of the GBM patients. Patients with ALT had longer survival that was independent of age, surgery, and other treatments. Mutations in isocitrate dehydrogenase (IDH1mut) 1 frequently accompanied ALT, and in the presence of both molecular events, there was significantly longer overall survival. These data suggest that most ALT+ tumors may be less aggressive proneural GBMs, and the better prognosis may relate to the set of genetic changes associated with this tumor subtype. Despite improved overall survival of patients treated with the addition of chemotherapy to radiotherapy and surgery, ALT and chemotherapy independently provided a survival advantage, but these factors were not found to be additive. These results suggest a critical need for developing new therapies to target these specific GBM subtypes.


Human Molecular Genetics | 2011

Normal mammalian cells negatively regulate telomere length by telomere trimming

Hilda A. Pickett; Jeremy D. Henson; Amy Y.M. Au; Axel A. Neumann; Roger R. Reddel

In human cancer cells with telomeres that have been over-lengthened by exogenous telomerase activity, telomere shortening can occur by a process that generates circles of double-stranded telomeric DNA (t-circles). Here, we demonstrate that this telomeretrimming process occurs in cells of the male germline and in normal lymphocytes following mitogen-stimulated upregulation of telomerase activity. Mouse tissues also contain abundant t-circles, suggesting that telomere trimming also contributes to telomere length regulation in mice. In cancer cells and stimulated lymphocytes, the mechanism involves the XRCC3 homologous recombination (HR) protein and generates single-stranded C-rich telomeric DNA. This suggests that, in addition to the well-documented gradual telomere attrition that accompanies cellular replication, there is also a more rapid form of negative telomere length control in normal mammalian cells, which most likely involves HR-mediated removal of telomere loops in the form of t-circles. We therefore propose that this telomere trimming mechanism is an additional factor in the balance between telomere lengthening and telomere shortening in normal human germline and somatic cells that may prevent excessive lengthening by processes such as telomerase activity.


Nucleic Acids Research | 2013

Detection of alternative lengthening of telomeres by telomere quantitative PCR

Loretta Lau; Rebecca A. Dagg; Jeremy D. Henson; Amy Y.M. Au; Janice A. Royds; Roger R. Reddel

Alternative lengthening of telomeres (ALT) is one of the two known telomere length maintenance mechanisms that are essential for the unlimited proliferation potential of cancer cells. Existing methods for detecting ALT in tumors require substantial amounts of tumor material and are labor intensive, making it difficult to study prevalence and prognostic significance of ALT in large tumor cohorts. Here, we present a novel strategy utilizing telomere quantitative PCR to diagnose ALT. The protocol is more rapid than conventional methods and scrutinizes two distinct characteristics of ALT cells concurrently: long telomeres and the presence of C-circles (partially double-stranded circles of telomeric C-strand DNA). Requiring only 30 ng of genomic DNA, this protocol will facilitate large-scale studies of ALT in tumors and can be readily adopted by clinical laboratories.


Journal of Cell Biology | 2009

Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins

Wei-Qin Jiang; Ze-Huai Zhong; Akira Nguyen; Jeremy D. Henson; Christian D. Toouli; Antony W. Braithwaite; Roger R. Reddel

Alternative lengthening of telomeres (ALT) is a recombination-mediated process that maintains telomeres in telomerase-negative cancer cells. In asynchronously dividing ALT-positive cell populations, a small fraction of the cells have ALT-associated promyelocytic leukemia nuclear bodies (APBs), which contain (TTAGGG)n DNA and telomere-binding proteins. We found that restoring p53 function in ALT cells caused p21 up-regulation, growth arrest/senescence, and a large increase in cells containing APBs. Knockdown of p21 significantly reduced p53-mediated induction of APBs. Moreover, we found that heterochromatin protein 1 (HP1) is present in APBs, and knockdown of HP1α and/or HP1γ prevented p53-mediated APB induction, which suggests that HP1-mediated chromatin compaction is required for APB formation. Therefore, although the presence of APBs in a cell line or tumor is an excellent qualitative marker for ALT, the association of APBs with growth arrest/senescence and with “closed” telomeric chromatin, which is likely to repress recombination, suggests there is no simple correlation between ALT activity level and the number of APBs or APB-positive cells.

Collaboration


Dive into the Jeremy D. Henson's collaboration.

Top Co-Authors

Avatar

Roger R. Reddel

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Axel A. Neumann

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hilda A. Pickett

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Wei-Qin Jiang

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Amy Y.M. Au

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca A. Dagg

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce G. Robinson

Kolling Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge