Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Farrar is active.

Publication


Featured researches published by Jeremy Farrar.


Nature | 2013

The global distribution and burden of dengue

Samir Bhatt; Peter W. Gething; Oliver J. Brady; Jane P. Messina; Andrew Farlow; Catherine L. Moyes; John M. Drake; John S. Brownstein; Anne G. Hoen; Osman Sankoh; Monica F. Myers; Dylan B. George; Thomas Jaenisch; G. R. William Wint; Cameron P. Simmons; Thomas W. Scott; Jeremy Farrar; Simon I. Hay

Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284–528) dengue infections per year, of which 96 million (67–136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.


Nature Reviews Microbiology | 2010

Dengue: a continuing global threat

María G. Guzmán; Scott B. Halstead; Harvey Artsob; Philippe Buchy; Jeremy Farrar; Duane J. Gubler; Elizabeth Hunsperger; Axel Kroeger; Harold S. Margolis; Eric Martinez; Michael B. Nathan; José L Pelegrino; Cameron P. Simmons; Sutee Yoksan; Rosanna W. Peeling

Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future.


Nature | 2001

Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18.

Julian Parkhill; Gordon Dougan; K. D. James; Nicholas R. Thomson; Derek Pickard; John Wain; Carol Churcher; Karen Mungall; Stephen D. Bentley; Matthew T. G. Holden; Mohammed Sebaihia; Stephen Baker; D. Basham; Karen Brooks; Tracey Chillingworth; Phillippa L. Connerton; A. Cronin; Paul Davis; Robert Davies; L. Dowd; Nicholas J. White; Jeremy Farrar; Theresa Feltwell; N. Hamlin; Ashraful Haque; Tran Tinh Hien; S. Holroyd; Kay Jagels; Anders Krogh; Tom Larsen

Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.


PLOS Pathogens | 2008

The Influence of Host and Bacterial Genotype on the Development of Disseminated Disease with Mycobacterium tuberculosis

Maxine Caws; Guy Thwaites; Sarah J. Dunstan; Thomas R. Hawn; Nguyen Thi Ngoc Lan; Nguyen Thuy Thuong Thuong; Kasia Stepniewska; Mai N. T. Huyen; Nguyen Duc Bang; Tran Huu Loc; Sebastien Gagneux; Dick van Soolingen; Kristin Kremer; Marianne van der Sande; Peter M. Small; Phan Thi Hoang Anh; Nguyen Tran Chinh; Hoang Thi Quy; Nguyen Thi Hong Duyen; Dau Quang Tho; Nguyen Trong Hieu; Estee Torok; Tran Tinh Hien; Nguyen Huy Dung; Nguyen Thi Quynh Nhu; Phan Minh Duy; Nguyen Van Vinh Chau; Jeremy Farrar

The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193–0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15–2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis.


Journal of Clinical Investigation | 2008

Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals

Laurel Yong-Hwa Lee; Do Lien Anh Ha; Cameron P. Simmons; Menno D. de Jong; Nguyen Van Vinh Chau; Reto Schumacher; Yan Chun Peng; Andrew J. McMichael; Jeremy Farrar; Geoffrey L. Smith; Alain Townsend; Brigitte A. Askonas; Sarah Rowland-Jones; Tao Dong

The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to stimulate pre-existing memory T cells established by seasonal human influenza A infection that could cross-react with H5N1 by targeting highly conserved internal proteins. To determine how common cross-reactive T cells are, we performed a comprehensive ex vivo analysis of cross-reactive CD4+ and CD8+ memory T cell responses to overlapping peptides spanning the full proteome of influenza A/Viet Nam/CL26/2005 (H5N1) and influenza A/New York/232/2004 (H3N2) in healthy individuals from the United Kingdom and Viet Nam. Memory CD4+ and CD8+ T cells isolated from the majority of participants exhibited human influenza-specific responses and showed cross-recognition of at least one H5N1 internal protein. Participant CD4+ and CD8+ T cells recognized multiple synthesized influenza peptides, including peptides from the H5N1 strain. Matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of cross-recognition. In addition, cross-reactive CD4+ and CD8+ T cells recognized target cells infected with recombinant vaccinia viruses expressing either H5N1 M1 or NP. Thus, vaccine formulas inducing heterosubtypic T cell-mediated immunity may confer broad protection against avian and human influenza A viruses.


Nature Genetics | 2014

Reappraisal of known malaria resistance loci in a large multicenter study

Kirk A. Rockett; Geraldine M. Clarke; Kathryn Fitzpatrick; Christina Hubbart; Anna Jeffreys; Kate Rowlands; Rachel Craik; Muminatou Jallow; David J. Conway; Kalifa Bojang; Margaret Pinder; Stanley Usen; Fatoumatta Sisay-Joof; Giorgio Sirugo; Ousmane Toure; Mahamadou A. Thera; Salimata Konate; Sibiry Sissoko; Amadou Niangaly; Belco Poudiougou; V. Mangano; Edith C. Bougouma; Sodiomon B. Sirima; David Modiano; Lucas Amenga-Etego; Anita Ghansah; Kwadwo A. Koram; Michael D. Wilson; Anthony Enimil; Jennifer L. Evans

Many human genetic associations with resistance to malaria have been reported, but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. We tested 55 SNPs in 27 loci previously reported to associate with severe malaria. There was evidence of association at P < 1 × 10−4 with the HBB, ABO, ATP2B4, G6PD and CD40LG loci, but previously reported associations at 22 other loci did not replicate in the multicenter analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, with a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed.


Lancet Infectious Diseases | 2014

Hand, foot, and mouth disease in China, 2008–12: an epidemiological study

Weijia Xing; Qiaohong Liao; Cécile Viboud; Jing Zhang; Junling Sun; Joseph T. Wu; Zhaorui Chang; Fengfeng Liu; Vicky J. Fang; Y.F. Zheng; Benjamin J. Cowling; Jay K. Varma; Jeremy Farrar; Gabriel M. Leung; Hongjie Yu

BACKGROUND Hand, foot, and mouth disease is a common childhood illness caused by enteroviruses. Increasingly, the disease has a substantial burden throughout east and southeast Asia. To better inform vaccine and other interventions, we characterised the epidemiology of hand, foot, and mouth disease in China on the basis of enhanced surveillance. METHODS We extracted epidemiological, clinical, and laboratory data from cases of hand, foot, and mouth disease reported to the Chinese Center for Disease Control and Prevention between Jan 1, 2008, and Dec 31, 2012. We then compiled climatic, geographical, and demographic information. All analyses were stratified by age, disease severity, laboratory confirmation status, and enterovirus serotype. FINDINGS The surveillance registry included 7,200,092 probable cases of hand, foot, and mouth disease (annual incidence, 1·2 per 1000 person-years from 2010-12), of which 267,942 (3·7%) were laboratory confirmed and 2457 (0·03%) were fatal. Incidence and mortality were highest in children aged 12-23 months (38·2 cases per 1000 person-years and 1·5 deaths per 100,000 person-years in 2012). Median duration from onset to diagnosis was 1·5 days (IQR 0·5-2·5) and median duration from onset to death was 3·5 days (2·5-4·5). The absolute number of patients with cardiopulmonary or neurological complications was 82,486 (case-severity rate 1·1%), and 2457 of 82486 patients with severe disease died (fatality rate 3·0%); 1617 of 1737 laboratory confirmed deaths (93%) were associated with enterovirus 71. Every year in June, hand, foot, and mouth disease peaked in north China, whereas southern China had semiannual outbreaks in May and September-October. Geographical differences in seasonal patterns were weakly associated with climate and demographic factors (variance explained 8-23% and 3-19%, respectively). INTERPRETATION This is the largest population-based study up to now of the epidemiology of hand, foot, and mouth disease. Future mitigation policies should take into account the heterogeneities of disease burden identified. Additional epidemiological and serological studies are warranted to elucidate the dynamics and immunity patterns of local hand, foot, and mouth disease and to optimise interventions. FUNDING China-US Collaborative Program on Emerging and Re-emerging Infectious Diseases, WHO, The Li Ka Shing Oxford Global Health Programme and Wellcome Trust, Harvard Center for Communicable Disease Dynamics, and Health and Medical Research Fund, Government of Hong Kong Special Administrative Region.


Cell | 2012

Host Genotype-Specific Therapies Can Optimize the Inflammatory Response to Mycobacterial Infections

David M. Tobin; Francisco J. Roca; Sungwhan F. Oh; Ross McFarland; Thad Vickery; John P. Ray; Dennis C. Ko; Yuxia Zou; Nguyen Duc Bang; Tran Thi Hong Chau; Jay C. Vary; Thomas R. Hawn; Sarah J. Dunstan; Jeremy Farrar; Guy Thwaites; Mary Claire King; Charles N. Serhan; Lalita Ramakrishnan

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


The Lancet | 2006

The WHO dengue classification and case definitions: time for a reassessment

Jacqueline L. Deen; Eva Harris; Bridget Wills; Angel Balmaseda; Samantha N. Hammond; Crisanta Rocha; Nguyen Minh Dung; Nguyen Thanh Hung; Tran Tinh Hien; Jeremy Farrar

Dengue is the most prevalent mosquito-borne viral disease in people. It is caused by four dengue virus serotypes (DEN-1 DEN-2 DEN-3 and DEN-4) of the genus Flavivirus and transmitted by Aedes aegypti mosquitoes. Infection provides life-long immunity against the infecting viral serotype but not against the other serotypes. Although most of the estimated 100 million dengue virus infections each year do not come to the attention of medical staff of those that do the most common clinical manifestation is non-specific febrile illness or classic dengue fever. About 250 000--500 000 patients developing more severe disease. The risk of severe disease is several times higher in sequential than in primary dengue virus infections. Despite the large numbers of people infected with the virus each year the existing WHO dengue classification scheme and case definitions have some drawbacks. In addition the widely used guidelines are not always reproducible in different countries--a quality that is crucial to effective surveillance and reporting as well as global disease comparisons. And as dengue disease spreads to different parts of the globe several investigators have reported difficulties in using the system and some have had to create new categories or new case definitions to represent the observed patterns of disease more accurately. (excerpt)


Nature Reviews Microbiology | 2010

Evaluation of diagnostic tests: dengue

Rosanna W. Peeling; Harvey Artsob; José L Pelegrino; Philippe Buchy; Mary Jane Cardosa; Shamala Devi; Delia A. Enria; Jeremy Farrar; Duane J. Gubler; María G. Guzmán; Scott B. Halstead; Elizabeth Hunsperger; Susie Kliks; Harold S. Margolis; Carl Michael Nathanson; Vinh Chau Nguyen; Nidia Rizzo; Susana Vázquez; Sutee Yoksan

Dengue is an arthropod-borne flavivirus that comprises four distinct serotypes (DEN-1, DEN-2, DEN-3 and DEN-4) that constitute an antigenic complex of the genus flavivirus, family Flaviviridae. Infection by one serotype induces life-long immunity against reinfection by the same serotype, but only transient and partial protection against infection with the other serotypes1,2. Dengue virus infections can result in a range of clinical manifestations from asymp tomatic infection to dengue fever (DF) and the severe disease dengue haemorrhagic fever/dengue shock syndrome (DHF/ DSS). Most dengue infections are asymptomatic or cause mild symptoms, which are characterized by undifferentiated fever with or without rash. Typical DF is characterized by high fever, severe headache, myalgia, arthralgia, retro-orbital pain and maculopapular rash. Some patients show petechiae, bruising or thrombocytopenia. The clinical presentation of acute dengue infection is non-specific but 5–10% of patients progress to severe DHF/DSS, which can result in death if it is not managed appropriately. Plasma extravasation is the main pathophysiological finding of DHF/ DSS, which differentiates it from DF. DHF/ DSS is characterized by high fever, bleeding, thrombocytopenia and haemoconcentration (an increase in the concentration of blood cells as a result of fluid loss). Approximately 3–4 days after the onset of fever, patients can present with petechiae, rash, epistaxis, and gingival and gastrointestinal bleeding. Pleural effusion and ascites are common. Some patients develop circulatory failure (DSS), presenting with a weak and fast pulse, narrowing of pulse pressure or hypotension, cold and moist skin and altered mental state. Although there are no specific antiviral treatments for dengue infection, patients usually recover when the need for fluid management is identified early and electrolytes are administered3. It has been proposed that the classification of dengue disease should be simplified as severe and non-severe dengue. This simplified classification would make patient management and surveillance easier4. There is a need for specific, inexpensive dengue diagnostic tests that can be used for clinical management, surveillance and outbreak investigations and would permit early intervention to treat patients and prevent or control epidemics. Progress is being made in primary prevention, with several candidate dengue vaccines in late phases of development as well as improved vector control measures. Additionally, new techniques for the early detection of severe disease such as the use of biomarkers have the potential to decrease morbidity and

Collaboration


Dive into the Jeremy Farrar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge