Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Harbinson is active.

Publication


Featured researches published by Jeremy Harbinson.


Photosynthesis Research | 1990

The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves.

Christine H. Foyer; Robert T. Furbank; Jeremy Harbinson; Peter Horton

Abstract‘Photosynthetic control’ describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between ΔpH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP+] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.


Journal of Experimental Botany | 2010

Blue light dose―responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light

Sander W. Hogewoning; G. Trouwborst; Hans Maljaars; Hendrik Poorter; Wim van Ieperen; Jeremy Harbinson

The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.


Photosynthesis Research | 1990

The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves.

Bernard Genty; Jeremy Harbinson; Jean-Marie Briantais; Neil R. Baker

It has been suggested previously that non-photochemical quenching of chlorophyll fluorescence is associated with a decrease in the rate of photosystem 2 (PS 2) photochemistry. In this study analyses of fluorescence yield changes, induced by flashes in leaves exhibiting different amounts of non-photochemical quenching of fluorescence, are made to determine the effect of non-photochemical excitation energy quenching processes on the rate of PS 2 photochemistry. It is demonstrated that both the high-energy state and the more slowly relaxing components of non-photochemical quenching reduce the rate of PS 2 photochemistry. Flash dosage response curves for fluorescence yield show that non-photochemical quenching processes effectively decrease the relative effective absorption cross-section for PS 2 photochemistry. It is suggested that non-photochemical quenching processes exert an effect on the rate of PS 2 photochemistry by increasing the dissipation of excitation energy by non-radiative processes in the pigment matrices of PS 2, which consequently results in a decrease in the efficiency of delivery of excitation energy for PS 2 photochemistry.


Plant Physiology and Biochemistry | 2002

Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures : review

Christine H. Foyer; Hélène Vanacker; Leonardo Darío Gómez; Jeremy Harbinson

Maize (Zea mays L.) is a chilling (below 15 °C) sensitive plant that shows little capacity to acclimate to low growth temperatures. Maize leaves are extremely sensitive to chilling injury, which usually results in premature leaf senescence. Leaves exposed to temperatures below 10 °C in the light show substantial inhibition of CO2 assimilation and down-regulation of photosynthetic electron transport. However, the intrinsic relationships between the quantum efficiencies of photosystems I and II are not modified by chilling. Moreover, the integral relationships between non-cyclic electron transport and CO2 fixation are similar in chilled and unchilled leaves. In this review we examine the roles and importance of photosynthetic regulation, carbon metabolism and antioxidant metabolism in determining the sensitivity of maize leaf photosynthesis to chilling. The distinct cellular localisation patterns of antioxidant enzymes such as glutathione reductase (EC 1.6.4.2) and dehydroascorbate reductase (EC 1.8.5.1) can restrict the recycling of antioxidants associated with photosynthesis during chilling. Disruption of circadian regulation of metabolism and insufficient antioxidant defence are postulated to cause chilling sensitivity.


Photosynthesis Research | 1990

The relationship between CO2 assimilation and electron transport in leaves

Jeremy Harbinson; Bernard Genty; Neil R. Baker

The inter-relationships between the quantum efficiencies of photosystems I (φI) and II (φII) and the quantum yield of CO2 fixation % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] were investigated in pea (Pisum sativum (L)) leaves with differing rates of photosynthesis using both photorespiratory and non-photorespiratory conditions, and in a leaf of Hedera helix (L) under photorespiratory conditions. The results indicate that under photorespiratory conditions the relationship between % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiabeA8aMnaaBa% aaleaacaWGdbGaam4tamaaBaaameaacaaIYaaaleqaaaqabaaaaa!3BD3!\[\phi _{CO_2 } \] and both φI and φII is non-linear and variable. The relationship between φI and φII under these circumstances remains predominantly linear. Under non-photorespiratory conditions, leaves with a low rate of photosynthesis due to sink limitation exhibit a non-linear relationship between φI and φII, though the relationship between φI and φII remains linear suggesting a close relationship between linear electron flow and CO2 fixation. Leaves irradiated at the CO2 compensation point also exhibit a non-linear relationship between φI and φII. These results suggest that for leaves in air linear electron flow is the predominant source of energy for metabolism. The role of cyclic electron transport is considered when the requirement for the products of linear electron transport is depressed.


The Plant Cell | 2012

Photosynthetic Quantum Yield Dynamics: From Photosystems to Leaves

Sander W. Hogewoning; Emilie Wientjes; Peter Douwstra; G. Trouwborst; Wim van Ieperen; Roberta Croce; Jeremy Harbinson

The quantum yield for CO2 fixation is wavelength dependent due to (1) light absorption by nonphotosynthetic pigments, (2) inefficient energy transfer, and (3) the excitation balance between the two photosystems. The growth-light spectrum alters the excitation balance by altering the photosystem composition, as shown both in vivo and in vitro. Enhancement effects can increase the quantum yield. The mechanisms underlying the wavelength dependence of the quantum yield for CO2 fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO2 fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.


Plant Physiology | 1997

Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves

Alison H. Kingston-Smith; Jeremy Harbinson; Janet Williams; Christine H. Foyer

The relationships between electron transport and photosynthetic carbon metabolism were measured in maize (Zea mays L.) leaves following exposure to suboptimal temperatures. The quantum efficiency for electron transport in unchilled leaves was similar to that previously observed in C3 plants, although maize has two types of chloroplasts, mesophyll and bundle sheath, with PSII being largely absent from the latter. The index of noncyclic electron transport was proportional to the CO2 assimilation rate. Chilled leaves showed decreased rates of CO2 assimilation relative to unchilled leaves, but the integral relationships between the quantum efficiency for electron transport or the index of noncyclic electron transport and CO2 fixation were unchanged and there was no photoinhibition. The maximum catalytic activities of the Benson-Calvin cycle enzymes, fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase, were decreased following chilling, but activation was unaffected. Measurements of thiol-regulated enzymes, particularly NADP-malate dehydrogenase, indicated that chilling induced changes in the stromal redox state so that reducing equivalents were more plentiful. We conclude that chilling produces a decrease in photosynthetic capacity without changing the internal operational, regulatory or stoichiometric relationships between photosynthetic electron transport and carbon assimilation. The enzymes of carbon assimilation are particularly sensitive to chilling, but enhanced activation may compensate for decreases in maximal catalytic activity.


Trends in Plant Science | 2011

Natural genetic variation in plant photosynthesis

Pádraic J. Flood; Jeremy Harbinson; Mark G. M. Aarts

Natural genetic variation in plant photosynthesis is a largely unexplored and as a result an underused genetic resource for crop improvement. Numerous studies show genetic variation in photosynthetic traits in both crop and wild species, and there is an increasingly detailed knowledge base concerning the interaction of photosynthetic phenotypes with their environment. The genetic factors that cause this variation remain largely unknown. Investigations into natural genetic variation in photosynthesis will provide insights into the genetic regulation of this complex trait. Such insights can be used to understand evolutionary processes that affect primary production, allow greater understanding of the genetic regulation of photosynthesis and ultimately increase the productivity of our crops.


Protoplasma | 1998

Antioxidant defences of the apoplast

Hélène Vanacker; Jeremy Harbinson; J Ruisch; Tlw Carver; Christine H. Foyer

SummaryThe apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.


Plant Cell and Environment | 2009

Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy

Xinyou Yin; P.C. Struik; Pascual Romero; Jeremy Harbinson; Jochem B. Evers; Peter E.L. van der Putten; J. Vos

We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO(2) assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Phi(2)). The approach uses curve fitting to data of A and Phi(2) at various levels of incident irradiance (I(inc)), intercellular CO(2) (C(i)) and O(2). Estimated parameters include day respiration (R(d)), conversion efficiency of I(inc) into linear electron transport of PSII under limiting light [kappa(2(LL))], electron transport capacity (J(max)), curvature factor (theta) for the non-rectangular hyperbolic response of electron flux to I(inc), ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) CO(2)/O(2) specificity (S(c/o)), Rubisco carboxylation capacity (V(cmax)), rate of triose phosphate utilization (T(p)) and mesophyll conductance (g(m)). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated S(c/o) (25 degrees C) was 3.13 mbar microbar(-1); R(d) was lower than respiration in the dark; J(max) was lower and theta was higher at 2% than at 21% O(2); kappa(2(LL)), V(cmax), J(max) and T(p) correlated to leaf nitrogen content; and g(m) decreased with increasing C(i) and with decreasing I(inc). Based on the parameter estimates, we surmised that there was some alternative electron transport.

Collaboration


Dive into the Jeremy Harbinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sander W. Hogewoning

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

G. Trouwborst

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

L.F.M. Marcelis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mark G. M. Aarts

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elias Kaiser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Xinyou Yin

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Alejandro Morales

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P.C. Struik

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Wim van Ieperen

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge