Sander W. Hogewoning
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sander W. Hogewoning.
Journal of Experimental Botany | 2010
Sander W. Hogewoning; G. Trouwborst; Hans Maljaars; Hendrik Poorter; Wim van Ieperen; Jeremy Harbinson
The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity.
The Plant Cell | 2012
Sander W. Hogewoning; Emilie Wientjes; Peter Douwstra; G. Trouwborst; Wim van Ieperen; Roberta Croce; Jeremy Harbinson
The quantum yield for CO2 fixation is wavelength dependent due to (1) light absorption by nonphotosynthetic pigments, (2) inefficient energy transfer, and (3) the excitation balance between the two photosystems. The growth-light spectrum alters the excitation balance by altering the photosystem composition, as shown both in vivo and in vitro. Enhancement effects can increase the quantum yield. The mechanisms underlying the wavelength dependence of the quantum yield for CO2 fixation (α) and its acclimation to the growth-light spectrum are quantitatively addressed, combining in vivo physiological and in vitro molecular methods. Cucumber (Cucumis sativus) was grown under an artificial sunlight spectrum, shade light spectrum, and blue light, and the quantum yield for photosystem I (PSI) and photosystem II (PSII) electron transport and α were simultaneously measured in vivo at 20 different wavelengths. The wavelength dependence of the photosystem excitation balance was calculated from both these in vivo data and in vitro from the photosystem composition and spectroscopic properties. Measuring wavelengths overexciting PSI produced a higher α for leaves grown under the shade light spectrum (i.e., PSI light), whereas wavelengths overexciting PSII produced a higher α for the sun and blue leaves. The shade spectrum produced the lowest PSI:PSII ratio. The photosystem excitation balance calculated from both in vivo and in vitro data was substantially similar and was shown to determine α at those wavelengths where absorption by carotenoids and nonphotosynthetic pigments is insignificant (i.e., >580 nm). We show quantitatively that leaves acclimate their photosystem composition to their growth light spectrum and how this changes the wavelength dependence of the photosystem excitation balance and quantum yield for CO2 fixation. This also proves that combining different wavelengths can enhance quantum yields substantially.
Journal of Experimental Botany | 2010
Sander W. Hogewoning; Peter Douwstra; G. Trouwborst; Wim van Ieperen; Jeremy Harbinson
Plant responses to the light spectrum under which plants are grown affect their developmental characteristics in a complicated manner. Lamps widely used to provide growth irradiance emit spectra which are very different from natural daylight spectra. Whereas specific responses of plants to a spectrum differing from natural daylight may sometimes be predictable, the overall plant response is generally difficult to predict due to the complicated interaction of the many different responses. So far studies on plant responses to spectra either use no daylight control or, if a natural daylight control is used, it will fluctuate in intensity and spectrum. An artificial solar (AS) spectrum which closely resembles a sunlight spectrum has been engineered, and growth, morphogenesis, and photosynthetic characteristics of cucumber plants grown for 13 d under this spectrum have been compared with their performance under fluorescent tubes (FTs) and a high pressure sodium lamp (HPS). The total dry weight of the AS-grown plants was 2.3 and 1.6 times greater than that of the FT and HPS plants, respectively, and the height of the AS plants was 4-5 times greater. This striking difference appeared to be related to a more efficient light interception by the AS plants, characterized by longer petioles, a greater leaf unfolding rate, and a lower investment in leaf mass relative to leaf area. Photosynthesis per leaf area was not greater for the AS plants. The extreme differences in plant response to the AS spectrum compared with the widely used protected cultivation light sources tested highlights the importance of a more natural spectrum, such as the AS spectrum, if the aim is to produce plants representative of field conditions.
New Phytologist | 2010
Si-Jun Zheng; Tjeerd A. L. Snoeren; Sander W. Hogewoning; Joop J. A. van Loon; Marcel Dicke
Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.
Physiologia Plantarum | 2011
G. Trouwborst; Sander W. Hogewoning; Jeremy Harbinson; Wim van Ieperen
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (A(max)), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m⁻² s⁻¹) or moderate (200 µmol m⁻² s⁻¹) irradiance were subsequently exposed to, respectively, moderate (LM-leaves) or low (ML-leaves) irradiance or kept at constant irradiance level (LL- and MM-leaves). Acclimation of photosynthesis occurred within 7 days with final A(max) highest in MM-leaves, lowest in LL-leaves and intermediate in ML- and LM-leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non-photochemical quenching occurred in ML- and LM-leaves. Dark respiration correlated with irradiance level, but not with A(max). Light-limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM-leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML-leaves. Net assimilation of LM-leaves under moderate irradiance remained lower than in MM-leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.
Journal of Horticultural Science & Biotechnology | 2011
G. Trouwborst; Sander W. Hogewoning; Jeremy Harbinson; W. van Ieperen
Summary In dense crop stands, the decrease in leaf photosynthetic capacity (Amax) is paralleled by a decrease in photosynthetically active photon flux density (PPFD) and an increase in leaf age. In greenhouse horticulture, assimilation lighting is traditionally applied from above the canopy. Recently a new lighting technique has been developed in which assimilation lighting is applied within the canopy: intracanopy lighting. This development raises the question whether the decrease in the Amax of lower, thus older and shaded, leaves in a crop is solely due to the lower PPFD, or also partly due to ageing of these leaves. We investigated whether leaf ageing influenced changes in the Amax of tomato leaves during their usual life-span during cultivation in commercial crop systems (i.e., up to 70 d). To uncouple leaf age from the PPFD, tomato plants were grown horizontally, so that the PPFD was similar for all leaves. To investigate the effect of PPFD during leaf development (PPFDld), Amax-leaf age profiles were determined for the leaves of plants grown under conditions with distinctly different natural patterns of PPFD (i.e., Winter, early Spring, and late Spring). In addition, in half of the plants used per experiment, all fully-developed leaves were shaded to 25% of the normal PPFD in the greenhouse using a neutral density filter. Photosynthetic capacity and chlorophyll contents were higher in late Spring than in Winter, but were hardly affected by leaf age. In early Spring, the Amax and chlorophyll contents were higher in younger leaves than in older leaves. To a large extent, this was due to the differences in PPFDld, and hardly due to leaf ageing. Shading fully-developed, mature leaves dramatically decreased their Amax and chlorophyll contents within a few days. We conclude that, during the normal 70 d life-span of tomato leaves in commercial cultivation, the decrease in PPFD within the canopy, and not leaf-ageing, is the most important factor causing changes in Amax with canopy depth.
Physiologia Plantarum | 2010
G. Trouwborst; Joke Oosterkamp; Sander W. Hogewoning; Jeremy Harbinson; Wim van Ieperen
Scientia Horticulturae | 2011
Roberta Paradiso; E. Meinen; J.F.H. Snel; Pieter H. B. de Visser; Wim van Ieperen; Sander W. Hogewoning; L.F.M. Marcelis
Journal of Experimental Botany | 2006
Sander W. Hogewoning; Jeremy Harbinson
Acta Horticulturae | 2007
Sander W. Hogewoning; G. Trouwborst; G.H.M. Engbers; Jeremy Harbinson; W. van Ieperen; A.H.C.M. Schapendonk; C.S. Pot; O. (Olaf) van Kooten