Jeremy J. B. Wentzell
Environment Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy J. B. Wentzell.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Paul J. DeMott; Thomas C. J. Hill; Christina S. McCluskey; Kimberly A. Prather; Douglas B. Collins; Ryan C. Sullivan; Matthew J. Ruppel; Ryan H. Mason; Victoria E. Irish; Taehyoung Lee; Chung Yeon Hwang; Tae Siek Rhee; Jefferson R. Snider; Gavin R. McMeeking; Suresh Dhaniyala; Ernie R. Lewis; Jeremy J. B. Wentzell; Jonathan P. D. Abbatt; Christopher Lee; Camille M. Sultana; Andrew P. Ault; Jessica L. Axson; Myrelis Diaz Martinez; Ingrid Venero; G. Santos-Figueroa; M. Dale Stokes; Grant B. Deane; Olga L. Mayol-Bracero; Vicki H. Grassian; Timothy H. Bertram
Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.
Environmental Science & Technology | 2013
Jeremy J. B. Wentzell; John Liggio; Shao-Meng Li; A. L. Vlasenko; Ralf M. Staebler; Gang Lu; Marie-Josée Poitras; Tak W. Chan; Jeffrey R. Brook
Gas-phase acids in light duty diesel (LDD) vehicle exhaust were measured using chemical ionization mass spectrometry (CIMS). Fuel based emission factors (EF) and NOx ratios for these species were determined under differing steady state engine operating conditions. The derived HONO and HNO3 EFs agree well with literature values, with HONO being the single most important acidic emission. Of particular importance is the quantification of the EF for the toxic species, isocyanic acid (HNCO). The emission factors for HNCO ranged from 0.69 to 3.96 mg kgfuel(-1), and were significantly higher than previous biomass burning emission estimates. Further ambient urban measurements of HNCO demonstrated a clear relationship with the known traffic markers of benzene and toluene, demonstrating for the first time that urban commuter traffic is a source of HNCO. Estimates based upon the HNCO-benzene relationship indicate that upward of 23 tonnes of HNCO are released annually from commuter traffic in the Greater Toronto Area, far exceeding the amount possible from LDD alone. Nationally, 250 to 770 tonnes of HNCO may be emitted annually from on-road vehicles, likely representing the dominant source of exposure in urban areas, and with emissions comparable to that of biomass burning.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Emma L. Mungall; Jonathan P. D. Abbatt; Jeremy J. B. Wentzell; Alex K. Y. Lee; Jennie L. Thomas; Marjolaine Blais; Michel Gosselin; Lisa A. Miller; Tim Papakyriakou; Megan D. Willis; John Liggio
Significance A biogeochemical connection between the atmosphere and the ocean is demonstrated whereby a marine source of oxygenated volatile organic compounds is identified. Compounds of this type are involved in the formation of secondary organic aerosol, which remains one of the most poorly understood components of Earth’s climate system due in part to the diverse sources of its volatile organic compound precursors. This is especially the case for marine environments, where there are more oxygenated volatile organic compounds than can be accounted for by known sources. Although it was observed in the summertime Arctic, this connection may be widespread and important to our understanding of secondary organic aerosol in other remote marine environments, with implications for our understanding of global climate. Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Shao-Meng Li; Amy Leithead; Samar G. Moussa; John Liggio; Michael D. Moran; Daniel Wang; Katherine Hayden; Andrea Darlington; Mark Gordon; Ralf M. Staebler; Paul A. Makar; Craig Stroud; Robert McLaren; Peter S. Liu; Jason O’Brien; Richard L. Mittermeier; Junhua Zhang; George Marson; Stewart G. Cober; Mengistu Wolde; Jeremy J. B. Wentzell
Significance Validation of volatile organic compound (VOC) emission reports, especially from large industrial facilities, is rarely attempted. Given uncertainties in emission reports, their evaluation and validation will build confidence in emission inventories. It is shown that a top-down approach can provide measurement-based emission rates for such emission validation. Comparisons with emission reports from Alberta oil sands surface mining facilities revealed significant differences in VOC emissions between top-down emissions rates and reports. Comparison with VOC species emission reports using currently accepted estimation methods indicates that emissions were underestimated in the reports for most species. This exercise shows that improvements in the accuracy and completeness of emissions estimates from complex facilities would enhance their application to assessing the impacts of such emissions. Large-scale oil production from oil sands deposits in Alberta, Canada has raised concerns about environmental impacts, such as the magnitude of air pollution emissions. This paper reports compound emission rates (E) for 69–89 nonbiogenic volatile organic compounds (VOCs) for each of four surface mining facilities, determined with a top-down approach using aircraft measurements in the summer of 2013. The aggregate emission rate (aE) of the nonbiogenic VOCs ranged from 50 ± 14 to 70 ± 22 t/d depending on the facility. In comparison, equivalent VOC emission rates reported to the Canadian National Pollutant Release Inventory (NPRI) using accepted estimation methods were lower than the aE values by factors of 2.0 ± 0.6, 3.1 ± 1.1, 4.5 ± 1.5, and 4.1 ± 1.6 for the four facilities, indicating underestimation in the reported VOC emissions. For 11 of the combined 93 VOC species reported by all four facilities, the reported emission rate and E were similar; but for the other 82 species, the reported emission rate was lower than E. The median ratio of E to that reported for all species by a facility ranged from 4.5 to 375 depending on the facility. Moreover, between 9 and 53 VOCs, for which there are existing reporting requirements to the NPRI, were not included in the facility emission reports. The comparisons between the emission reports and measurement-based emission rates indicate that improvements to VOC emission estimation methods would enhance the accuracy and completeness of emission estimates and their applicability to environmental impact assessments of oil sands developments.
Journal of Applied Meteorology and Climatology | 2012
Mark Gordon; Ralf M. Staebler; John Liggio; Paul A. Makar; Shao-Meng Li; Jeremy J. B. Wentzell; Gang Lu; Patrick Lee; Jeffrey R. Brook
AbstractIn August and September of 2010, measurements of turbulent fluxes and turbulent kinetic energy were made on highways in the Toronto area (Ontario, Canada). In situ turbulence measurements were made with a mobile laboratory while driving on the highway with traffic. Results demonstrate that the turbulent kinetic energy (TKE) spectrum is significantly enhanced on and near the highway by traffic for frequencies above 0.015 Hz. The decay of TKE with distance behind vehicles is well approximated by power-law curves. The strongest increase in TKE is seen while following heavy-duty trucks, primarily for frequencies above 0.7 Hz. From these results, a parameterization of on-road TKE enhancement is developed that is based on vehicle type and traffic-flow rate. TKE with distance downwind of the highway also decays following a power law. The enhancement of roadside TKE is shown to be strongly dependent on traffic flow. The effect of vehicle-induced turbulence on vertical mixing was studied by comparing param...
Journal of Geophysical Research | 2014
Craig Stroud; John Liggio; Jie Zhang; Mark Gordon; Ralf M. Staebler; Paul A. Makar; Junhua Zhang; Shao-Meng Li; C. Mihele; G. Lu; Daniel K. Wang; Jeremy J. B. Wentzell; Jeffrey R. Brook; Greg J. Evans
The Fast Evolution of Vehicle Emissions from Roadway (FEVER) study was undertaken to strategically measure pollutant gradients perpendicular to a major highway north of Toronto, Canada. A case study period was analyzed when there was an average perpendicular wind direction. Two independent, fast response measurements were used to infer rapid organic aerosol (OA) growth on a spatial scale from 34 m to 285 m at the same time as a decrease was observed in the mixing ratio of primary emitted species, such as CO2 and NOx. An integrated organic gas and particle sampler also showed that near the highway, the aerosol had a larger semivolatile fraction than lower volatile fraction, but over a relatively short distance downwind of the highway, the aerosol transformed to being more low volatile with the change being driven by both evaporation of semivolatile and production of lower volatile organic aerosol. A new 1-D column Lagrangian atmospheric chemistry model was developed to help interpret the measured increase in the ∆OA/∆CO2 curve from 34 m to 285 m downwind of highway, where the ∆ refers to background-corrected concentrations. The model was sensitive to the assumptions for semivolatile organic compounds (SVOCs). Different combinations of SVOC emissions and background mixing ratios were able to yield similar model curves and reproduce the observations. Future measurements of total gas-phase SVOC in equilibrium with aerosol both upwind and downwind of the highway would be helpful to constrain the model.
Geophysical Research Letters | 2014
R. Zhao; Alex K. Y. Lee; Jeremy J. B. Wentzell; A. M. Mcdonald; Desiree Toom-Sauntry; W. R. Leaitch; R. L. Modini; A. L. Corrigan; Lynn M. Russell; Kevin J. Noone; J. C. Schroder; Allan K. Bertram; Lelia N. Hawkins; J. P. D. Abbatt; John Liggio
Although isocyanic acid (HNCO) may cause a variety of health issues via protein carbamylation and has been proposed as a key compound in smoke-related health issues, our understanding of the atmospheric sources and fate of this toxic compound is currently incomplete. To address these issues, a field study was conducted at Mount Soledad, La Jolla, CA, to investigate partitioning of HNCO to clouds and fogs using an Acetate Chemical Ionization Mass Spectrometer coupled to a ground-based counterflow virtual impactor. The first field evidence of cloud partitioning of HNCO is presented, demonstrating that HNCO is dissolved in cloudwater more efficiently than expected based on the effective Henrys law solubility. The measurements also indicate evidence for a secondary, photochemical source of HNCO in ambient air at this site.
Atmospheric Pollution Research | 2015
Cheol-Heon Jeong; Greg J. Evans; Robert M. Healy; Parnian Jadidian; Jeremy J. B. Wentzell; John Liggio; Jeffrey R. Brook
The health of a substantial portion of urban populations is potentially being impacted by exposure to traffic–related atmospheric pollutants. To better understand the rapid physical and chemical transformation of these pollutants, the number size distributions of non–volatile traffic–related particles were investigated at different distances from a major highway. Particle volatility measurements were performed upwind and downwind of the highway using a fast mobility particle sizing spectrometer with a thermodenuder on a mobile laboratory. The number concentration of non–denuded ultrafine particles decreased exponentially with distance from the highway, whereas a more gradual gradient was observed for non–volatile particles. The non–volatile number concentration at 27 m was higher than that at 280 m by a factor of approximately 3, and the concentration at 280 m was still higher than that upwind of the highway. The proportion of non–volatile particles increased away from the highway, representing 36% of the total particle number at 27 m, 62% at 280 m, and 81% at the upwind site. A slight decrease in the geometric mean diameter of the non–volatile particle size distributions from approximately 35 nm to 30 nm was found between 27 m and 280 m, in contrast to the growth of non–denuded particles with increasing distance from the highway. Single particle analysis results show that the contribution of elemental carbon (EC)–rich particle types at 27 m was higher than the contribution at 280 m by a factor of approximately 2. The findings suggest that people living or spending time near major roadways could be exposed to elevated number concentrations of nucleation–mode volatile particles ( 100 nm). The impact of the highway emissions on air quality was observable up to 300 m.
Atmospheric Chemistry and Physics | 2017
John Liggio; Samar G. Moussa; Jeremy J. B. Wentzell; Andrea Darlington; Peter Liu; Amy Leithead; Katherine Hayden; Jason O'Brien; Richard L. Mittermeier; Ralf M. Staebler; Mengistu Wolde; Shao-Meng Li
Transformation flights were designed as Lagrangian experiments such that air parcels in plumes were repeatedly sampled at different times (1 hour apart), by flying virtual screens (at multiple altitudes) up to 120km downwind of the OS. There were no industrial emissions between the screens such that pollutant differences 20 between screens can be ascribed to a combination of photochemistry, dilution and deposition. Meteorological parameters associated with the transformation flights are given in Liggio et al., 2016. In the current work, the secondary formation of organic acids and their evolution over time is investigated using primarily F19 (but also F20) as it was the most successful Lagrangian experiment, having the best agreement between air parcel transport times and aircraft flight times at each plume intercept (Liggio et al., 2016). 25
Geophysical Research Letters | 2017
Julia Burkart; Anna L. Hodshire; Emma L. Mungall; Jeffrey R. Pierce; Douglas B. Collins; Luis A. Ladino; Alex K. Y. Lee; Victoria E. Irish; Jeremy J. B. Wentzell; John Liggio; Tim Papakyriakou; Jennifer G. Murphy; Jonathan P. D. Abbatt
Ship-based aerosol measurements in the summertime Arctic indicate elevated concentrations of ultrafine particles with occasional growth to CCN sizes. Focusing on one episode with two continuously growing modes, growth occurs faster for a large, pre-existing mode (dp ≈ 90 nm) than for a smaller nucleation mode (dp ≈ 20 nm). We use microphysical modeling to show that growth is largely via organic condensation. Unlike results for mid-latitude forested regions, most of these condensing species behave as semi-volatile organics, as lower-volatility organics would lead to faster growth of the smaller mode. The magnitude of the CCN hygroscopicity parameter for the growing particles, ~0.1, is also consistent with organic species constituting a large fraction of the particle composition. Mixing ratios of common aerosol growth precursors, such as isoprene and sulfur dioxide, are not elevated during the episode, indicating that an unidentified aerosol-growth precursor is present in this high-latitude marine environment.