Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy Morley is active.

Publication


Featured researches published by Jeremy Morley.


web science | 2003

Selection of the landing site in Isidis Planitia of Mars probe Beagle 2

John C. Bridges; A. M. Seabrook; David A. Rothery; Jung-Rack Kim; C. T. Pillinger; Mark R. Sims; M. P. Golombek; T. C. Duxbury; James W. Head; A. F. C. Haldemann; K.L. Mitchell; Jan-Peter Muller; Stephen R. Lewis; C. Moncrieff; I. P. Wright; Monica M. Grady; Jeremy Morley

This paper describes selection and characterization of the landing site for the Mars 2004 Beagle 2 mission. The site is within Isidis Planitia between 10°–12°N, 266°–274°W, centered at 11.6°N, 269.5°W. This is at low elevation (-3600 to -3900 m MOLA), is flat (MOLA RMS slope = 0.57°), radar data suggest a smoother surface at decimeter to meter scales than the Pathfinder site and it has a moderate rock abundance (2–17%, mean 11%). In addition to this, Isidis shows evidence for concentration and remobilization of volatiles. In particular, the basin contains conical landforms. We favor models involving the formation of tuff cones during magma-ice interaction. Structures identified as dykes in MOC images may be remnants of magma conduits. The pattern of bulk thermal inertia in Isidis (higher values of 500 Jm-2s-0.5K-1 around the SW-S-E margin decreasing toward the center and north) suggests that an influx of sediment spread from the Noachian areas around the southern half of the basin over the basin floor. The coarse, higher thermal inertia material was deposited closest to the sediment source. The variable state of erosion of the tuff cones suggests that they formed intermittently over a long period of time during Amazonian and possibly Hesperian epochs. Geologically recent resurfacing of Isidis has also occurred by aeolian processes, and this is shown by a deficit in impact craters <120 m diameter. The proportion of rocky material is predicted to be slightly less than the Viking and Pathfinder sites, but there will probably be more duricrust.


Photogrammetric Engineering and Remote Sensing | 2005

Automated Crater Detection, A New Tool for Mars Cartography and Chronology

Jung Rack Kim; Jan-Peter Muller; Stephan van Gasselt; Jeremy Morley; Gerhard Neukum

An automated crater detection algorithm is presented which exploits image data. The algorithm is briefly described and its application demonstrated on a variety of different Martian geomorphological areas and sensors (Viking Orbiter Camera, Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and High Resolution Stereo Camera (HRSC)). We show assessment results through both an intercomparison of automated crater locations with those from the manually-derived Mars Crater Consortium (MCC) catalogue and the manually-derived craters. The detection algorithm attains an accuracy of 70 to 90 percent and a quality factor of 60 to 80 percent depending on target sensor type and geomorphology. We also present crater detection results derived from HRSC images onboard the ESA Mars Express on a comparison between manually-determined Size-Frequency Distributions (SFDs) and those derived fully automatically. The approach described appears to offer great potential for chronological research, geomatic and geological analysis and for other purposes of extra-terrestrial planetary surface mapping.


Journal of Geophysical Research | 2001

Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry

N. F. Stevens; G. Wadge; C. A. Williams; Jeremy Morley; Jan-Peter Muller; J. B. Murray; M. Upton

Lava flows continue to move after they have been emplaced by flow mechanisms. This movement is largely vertical and can be detected using differential synthetic aperture radar (SAR) interferometry. There are three main components to this motion: (1) movement of surface scatterers, resulting in radar phase decorrelation, (2) measurable subsidence of the flow surface due to thermal contraction and clast repacking, and (3) time-dependent depression of the flow substrate. These effects act in proportion to the thickness of the lava flow and decay with time, although there is a time lag before the third component becomes significant. We explore these effects using SAR data from the ERS satellites over the Etna volcano, Sicily. Phase decorrelation on young, thick a’a lava flows persists for a few years and probably results from surface block rotations during flow contraction. Maximum measured subsidence rates of the 1991–1993 lava flow over a period of 70 days are about 0.7 mm day−1, but are potentially greater in areas of data decorrelation. These rates fall to <2.7×10−2 mm day−1 after about 20 years in flows about 50 m thick, sooner for thinner flows. Comparison with measured subsidence rates on Kilauean lava lakes suggests that thermal contraction only accounts for about one third of the observed subsidence. The remaining motion is thought to come from surface clast repacking during cooling and from creep mechanisms in the flow substrate. Measurements of postemplacement surface movement provide new constraints on the thermomechanical properties of lava flows and have cautionary implications for the interpretation of interferometric SAR data of volcanoes.


Journal of Geophysical Research | 2010

Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis

Nicholas H. Warner; Sanjeev Gupta; Shih-Yuan Lin; Jung-Rack Kim; Jan-Peter Muller; Jeremy Morley

[1] The Ares Vallis region is surrounded by highland terrain containing both degraded and pristine large impact craters that suggest a change in climate during the Late Noachian-Early Hesperian, from warmer, wetter conditions to colder, dryer conditions. However, the regional occurrence of Hesperian-age crater outlet channels indicates that this period on Mars was characterized by episodic climate fluctuations that caused transient warming, facilitating the stability of liquid water at the surface. An extensive survey of the morphology and topography of 75 impact basins in the region indicates that of the largest degraded craters, 4 were identified with single outlet channels that suggest the former presence of water infill. These basins lack inlets indicating that water influx was likely derived from sapping of groundwater. A comparison of measured crater rim heights to modeled rim heights suggests that the bulk of the depth/diameter reduction on these craters was the result of infilling, possibly by sediments. Crater statistics indicate that crater degradation and infill occurred during a short 200 Ma interval in the Late Noachian, from 3.8 Ga to 3.6 Ga. Craters that formed after 3.6 Ga exhibit a near-pristine morphology. Our results support the hypothesis of rapid climate change at the end of the Noachian period. However, geologic relationships between the crater outlet channels and Ares Vallis indicate that drainage occurred only after the period of intense crater modification, during the Hesperian (3.5-2.9 Ga). This suggests a delay between the time of infill of the craters and the time of drainage.


ISPRS international journal of geo-information | 2013

Towards an Authoritative OpenStreetMap: Conflating OSM and OS OpenData National Maps' Road Network

Amir Pourabdollah; Jeremy Morley; Steven Feldman; Mike Jackson

The quality aspects of OpenStreetMap (OSM), as the global representation of crowd-sourced mapping, have always been of priomary concern to academics. While the methodologies for checking its quality against the national maps have been implemented by a number of studies, there are minimal works on how to practically improve the quality of OSM towards being an authoritative map source. This paper presents a method for conflating road attributes, namely the name and reference code, of OSM with the Open Data provided by Ordnance Survey (the British national mapping agency). The added values in the proposed methodology include the daily updates and serving of the conflated maps via open Web Services. More importantly, the OSM crowd correction is facilitated by frequently highlighting and web-serving the individual differences. There are currently over 5,800 differences in matching road names and references between the two datasets. In addition to describing the conflation methodology, the different geographic distribution patterns of the identified differences are discussed. A negative effect of the road density on the ratio of the mismatched features between the two datasets is observable, evidenced by their different geographical distribution over the map. It is shown that the best correspondence between attributes exists in the very dense areas, followed by the very low density areas, and lastly in the middle to large sized cities.


IEEE Transactions on Sustainable Computing | 2017

Challenges and Opportunities of Waste Management in IoT-Enabled Smart Cities: A Survey

Theodoros Anagnostopoulos; Arkady B. Zaslavsky; Kostas Kolomvatsos; Alexey Medvedev; Pouria Amirian; Jeremy Morley; Stathes Hadjieftymiades

The new era of Web and Internet of Things (IoT) paradigm is being enabled by the proliferation of various devices like RFIDs, sensors, and actuators. Smart devices (devices having significant computational capabilities, transforming them to ‘smart things’) are embedded in the environment to monitor and collect ambient information. In a city, this leads to Smart City frameworks. Intelligent services could be offered on top of such information related to any aspect of humans’ activities. A typical example of services offered in the framework of Smart Cities is IoT-enabled waste management. Waste management involves not only the collection of the waste in the field but also the transport and disposal to the appropriate locations. In this paper, we present a comprehensive and thorough survey of ICT-enabled waste management models. Specifically, we focus on the adoption of smart devices as a key enabling technology in contemporary waste management. We report on the strengths and weaknesses of various models to reveal their characteristics. This survey sets up the basis for delivering new models in the domain as it reveals the needs for defining novel frameworks for waste management.


Computers, Environment and Urban Systems | 2007

Graph theory in higher order topological analysis of urban scenes

J.-P. de Almeida; Jeremy Morley

Interpretation and analysis of spatial phenomena is a highly time-consuming and laborious task in several fields of the Geomatics world. That is why the automation of these tasks is especially needed in areas such as GISc. Carrying out those tasks in the context of an urban scene is particularly challenging given the complex spatial pattern of its elements. The aim of retrieving structured information from an initial unstructured data set translated into more meaningful homogeneous regions can be achieved by identifying meaningful structures within the initial collection of objects, and by understanding their topological relationships and spatial arrangement. This task is being accomplished by applying graph theory and by performing urban scene topology analysis. For this purpose, a graph-based system is being developed, and LiDAR data are currently being used as an example scenario. A particular emphasis is being given to the visualisation aspects of graph analysis, as visual inspections can often reveal patterns not discernable by current automated analysis techniques. This paper focuses primarily on the role of graph theory in the design of such a tool for the analysis of urban scene topology.


ISPRS international journal of geo-information | 2015

Modelling of Building Interiors with Mobile Phone Sensor Data

Julian F. Rosser; Jeremy Morley; Gavin Smith

Creating as-built plans of building interiors is a challenging task. In this paper we present a semi-automatic modelling system for creating residential building interior plans and their integration with existing map data to produce building models. Taking a set of imprecise measurements made with an interactive mobile phone room mapping application, the system performs spatial adjustments in accordance with soft and hard constraints imposed on the building plan geometry. The approach uses an optimisation model that exploits a high accuracy building outline, such as can be found in topographic map data, and the building topology to improve the quality of interior measurements and generate a standardised output. We test our system on building plans of five residential homes. Our evaluation shows that the approach enables construction of accurate interior plans from imprecise measurements. The experiments report an average accuracy of 0.24 m, close to the 0.20 m recommended by the CityGML LoD4 specification


International Journal of Geographical Information Science | 2013

A graph-based algorithm to define urban topology from unstructured geospatial data

J.-P. de Almeida; Jeremy Morley

Interpretation and analysis of urban topology are particularly challenging tasks given the complex spatial pattern of the urban elements, and hence their automation is especially needed. In terms of the urban scene meaning, the starting point in this study is unstructured geospatial data, i.e. no prior knowledge of the geospatial entities is assumed. Translating these data into more meaningful homogeneous regions can be achieved by detecting geographic features within the initial random collection of geospatial objects, and then by grouping them according to their spatial arrangement. The techniques applied to achieve this are those of graph theory applied to urban topology analysis within GIS environment. This article focuses primarily on the implementation and algorithmic design of a methodology to define and make urban topology explicit. Conceptually, such procedure analyses and interprets geospatial object arrangements in terms of the extension of the standard notion of the topological relation of adjacency to that of containment: the so-called ‘containment-first search’. LiDAR data were used as an example scenario for development and test purposes.


web and wireless geographical information systems | 2009

Tiled Vectors: A Method for Vector Transmission over the Web

Vyron Antoniou; Jeremy Morley; M Haklay

Transmitting vector data over the Web is a challenging issue. Existing methods for vector delivery over the Web focus on progressive transmission techniques. Long standing problems in the formalization of dynamic generalization and the time needed for complex algorithms does not allow their implementation in real life applications. We propose a new method for data transmission over the Web based on tiles. We show that in client-server architecture the coordination of all involved parts can create an efficient way to transmit vectors. We describe the methodology of how we can implement the successful for raster data, tile-based method to tackle the particularities of vector data transmission.

Collaboration


Dive into the Jeremy Morley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung-Rack Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Mike Jackson

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suchith Anand

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas H. Warner

State University of New York at Geneseo

View shared research outputs
Top Co-Authors

Avatar

Ah Walker

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Kitmitto

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge