Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy N. Bassis is active.

Publication


Featured researches published by Jeremy N. Bassis.


Science | 2008

A simple law for ice-shelf calving.

Richard B. Alley; Huw J. Horgan; Ian Joughin; Kurt M. Cuffey; Todd K. Dupont; Byron R. Parizek; Sridhar Anandakrishnan; Jeremy N. Bassis

A major problem for ice-sheet models is that no physically based law for the calving process has been established. Comparison across a diverse set of ice shelves demonstrates that iceberg calving increases with the along-flow spreading rate of a shelf. This relation suggests that frictional buttressing loss, which increases spreading, also leads to shelf retreat, a process known to accelerate ice-sheet flow and contribute to sea-level rise.


Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | 2012

Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice

Jeremy N. Bassis; C. C. Walker

Observations indicate that substantial changes in the dynamics of marine-terminating ice sheets and glaciers are tightly coupled to calving-induced changes in the terminus position. However, the calving process itself remains poorly understood and is not well parametrized in current numerical ice sheet models. In this study, we address this uncertainty by deriving plausible upper and lower limits for the maximum stable ice thickness at the calving face of marine-terminating glaciers, using two complementary models. The first model assumes that a combination of tensile and shear failure can render the ice cliff near the terminus unstable and/or enable pre-existing crevasses to intersect. A direct consequence of this model is that thick glaciers must terminate in deep water to stabilize the calving front, yielding a predicted maximum ice cliff height that increases with increasing water depth, consistent with observations culled from glaciers in West Greenland, Antarctica, Svalbard and Alaska. The second model considers an analogous lower limit derived by assuming that the ice is already fractured and fractures are lubricated by pore pressure. In this model, a floating ice tongue can only form when the ice entering the terminus region is relatively intact with few pre-existing, deeply penetrating crevasses.


Journal of Glaciology | 2011

The statistical physics of iceberg calving and the emergence of universal calving laws

Jeremy N. Bassis

Determining a calving law valid for all glaciological and environmental regimes has proven to be a difficult problem in glaciology. For this reason, most models of the calving process are semi-empirical, with little connection to the underlying fracture processes. In this study, I introduce methods rooted in statistical physics to show how calving laws, valid for any glaciological domain, can emerge naturally as a large-spatial-scale/long-temporal-scale limit of an underlying continuous or discrete fracture process. An important element of the method developed here is that iceberg calving is treated as a stochastic process and that the probability an iceberg will detach in a given interval of time can be described by a probability distribution function. Using limiting assumptions about the underlying probability distribution, the theory is shown to be able to simulate a range of calving styles, including the sporadic detachment of large, tabular icebergs from ice tongues and ice shelves and the more steady detachment of smaller-sized bergs from tidewater/outlet glaciers. The method developed has the potential to provide a physical basis to include iceberg calving into numerical ice-sheet models that can be used to produce more realistic estimates of the glaciological contribution to sea-level rise.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves

Yan Liu; John C. Moore; Xiao Cheng; Rupert Gladstone; Jeremy N. Bassis; Hongxing Liu; Jiahong Wen; Fengming Hui

Significance The floating parts of the Antarctic ice sheet (“ice shelves”) help to hold back the flow of the grounded parts, determining the contribution to global sea level rise. Using satellite images, we measured, for the first time, all icebergs larger than 1 km2 calving from the entire Antarctic coastline, and the state of health of all the ice shelves. Some large ice shelves are growing while many smaller ice shelves are shrinking. We find high rates of iceberg calving from Antarctic ice shelves that are undergoing basal melt-induced thinning, which suggests the fate of ice shelves may be more sensitive to ocean forcing than previously thought. Iceberg calving from all Antarctic ice shelves has never been directly measured, despite playing a crucial role in ice sheet mass balance. Rapid changes to iceberg calving naturally arise from the sporadic detachment of large tabular bergs but can also be triggered by climate forcing. Here we provide a direct empirical estimate of mass loss due to iceberg calving and melting from Antarctic ice shelves. We find that between 2005 and 2011, the total mass loss due to iceberg calving of 755 ± 24 gigatonnes per year (Gt/y) is only half the total loss due to basal melt of 1516 ± 106 Gt/y. However, we observe widespread retreat of ice shelves that are currently thinning. Net mass loss due to iceberg calving for these ice shelves (302 ± 27 Gt/y) is comparable in magnitude to net mass loss due to basal melt (312 ± 14 Gt/y). Moreover, we find that iceberg calving from these decaying ice shelves is dominated by frequent calving events, which are distinct from the less frequent detachment of isolated tabular icebergs associated with ice shelves in neutral or positive mass balance regimes. Our results suggest that thinning associated with ocean-driven increased basal melt can trigger increased iceberg calving, implying that iceberg calving may play an overlooked role in the demise of shrinking ice shelves, and is more sensitive to ocean forcing than expected from steady state calving estimates.


Geophysical Research Letters | 2005

Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica

Helen Amanda Fricker; Nw Young; R Coleman; Jeremy N. Bassis; Jean-Bernard Minster

We use satellite imagery from four sensors (Multi-angle Imaging SpectroRadiometer (MISR), Enhanced Thematic Mapper (ETM), and RADARSAT and ERS Synthetic Aperture Radar (SAR) to monitor the lengths of two rifts on the Amery Ice Shelf, from 1996 to 2004. We find that the rifts have each been propagating at a steady annual rate for the past 5 years. Superimposed on this steady rate is a seasonal signal, where propagation rates are significantly higher in the summer period (i.e., September–April) than in the winter period (i.e., April–September). Possible causes of this summer-winter effect are changing properties of the ice melange, which fills the rifts, and seasonal changes in ocean circulation beneath the ice shelf


Journal of Glaciology | 2009

Seismic observations of glaciogenic ocean waves (micro-tsunamis) on icebergs and ice shelves

Douglas R. MacAyeal; Emile A. Okal; Richard C. Aster; Jeremy N. Bassis

Seismometers deployed over a 3 year period on icebergs in the Ross Sea and on the Ross Ice Shelf, Antarctica, reveal that impulsive sources of ocean surface waves are frequent (e.g. ∼200 events per year in the Ross Sea) in the ice-shelf and iceberg-covered environment of coastal Antarctica. The 368 events recorded by our field deployment suggest that these impulsive events are generated by glaciological mechanisms, such as (1) small-scale calving and edge wasting of icebergs and ice-shelf fronts, (2) edge-on-edge closing and opening associated with iceberg collisions and (3) possibly the impulsive opening of void space associated with ice-shelf rifting and basal crevasse formation. The observations described here provide a background of glaciogenic ocean-wave phenomena relevant to the Ross Sea and suggest that these phenomena may be exploited in the future (using more purposefully designed observation schemes) to understand iceberg calving and ice-shelf disintegration processes.


Journal of Geophysical Research | 2008

Seismic and hydroacoustic tremor generated by colliding icebergs

Douglas R. MacAyeal; Emile A. Okal; Richard C. Aster; Jeremy N. Bassis

[1] Iceberg harmonic tremor (IHT) emanating from tabular icebergs in the Southern Ocean and along calving margins of the Antarctic Ice Sheet is a complex, evolving signal at frequencies above approximately 0.5 Hz. IHT has been observed as T phases on islands in the equatorial Pacific, as hydroacoustic signals in the Indian Ocean, and by local and regional Antarctic seismic networks. To identify the IHT source mechanism and to understand its relevance to iceberg calving, evolution, and breakup, we deployed seismometers on a giant (25 by 50 km) tabular iceberg called C16 in the Ross Sea, Antarctica, during a uniquely accessible period (austral summer, 2003–2004) when it was aground against the northern shore of Ross Island. During the deployment period, C16 was in sporadic contact with another giant tabular iceberg, B15A, that was moving under the influence of local ocean currents. This study reveals that the C16-associated IHT was a manifestation of extended episodes of discrete, repeating stick-slip icequakes (typically thousands of individual subevents per hour) produced when the cliff-like edges of the tabular icebergs underwent glancing, strike-slip collisions. The IHT signal that we observed is thus not a phenomenon associated with iceberg elastic or fluid resonance modes, but is instead the consequence of long sequences of very regularly spaced and similar pulses of seismic radiation from these constituent stick-slip subevents. IHT represents a newly identified glaciogenic source of seismicity that can be used to improve our understanding of iceberg dynamics and possibly of ice shelf disintegration processes.


Journal of Glaciology | 2008

An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica

Jeremy N. Bassis; Helen Amanda Fricker; R Coleman; Jean-Bernard Minster

For three field seasons (2002/03, 2004/05, 2005/06) we have deployed a network of GPS receivers and seismometers around the tip of a propagating rift on the Amery Ice Shelf, East Antarctica. During these campaigns we detected seven bursts of episodic rift propagation. To determine whether these rift propagation events were triggered by short-term environmental forcings, we analyzed simultaneous ancillary data such as wind speeds, tidal amplitudes and sea-ice fraction (a proxy variable for ocean swell). We find that none of these environmental forcings, separately or together, correlated with rift propagation. This apparent insensitivity of ice-shelf rift propagation to short-term environ- mental forcings leads us to suggest that the rifting process is primarily driven by the internal glaciological stress. Our hypothesis is supported by order-of-magnitude calculations that the glaciological stress is the dominant term in the force balance. However, our calculations also indicate that as the ice shelf thins or the rift system matures and iceberg detachment becomes imminent, short- term stresses due to winds and ocean swell may become more important.


Journal of Glaciology | 2007

Seismicity and deformation associated with ice-shelf rift propagation

Jeremy N. Bassis; Helen Amanda Fricker; R Coleman; Yehuda Bock; James Behrens; Dennis Darnell; M. H. Okal; Jean-Bernard Minster

Previous observations have shown that rift propagation on the Amery Ice Shelf (AIS), East Antarctica, is episodic, occurring in bursts of several hours with typical recurrence times of several weeks. Propagation events were deduced from seismic swarms (detected with seismometers) concurrent with rapid rift widening (detected with GPS receivers). In this study, we extend these results by deploying seismometers and GPS receivers in a dense network around the tip of a propagating rift on the AIS over three field seasons (2002/03, 2004/05 and 2005/06). The pattern of seismic event locations shows that icequakes cluster along the rift axis, extending several kilometers back from where the rift tip was visible in the field. Patterns of icequake event locations also appear aligned with the ice-shelf flow direction, along transverse-to-rift crevasses. However, we found some key differences in the seismicity between field seasons. Both the number of swarms and the number of events within each swarm decreased during the final field season. The timing of the slowdown closely corresponds to the rift tip entering a suture zone, formed where two ice streams merge upstream. Beneath the suture zone lies a thick band of marine ice. We propose two hypotheses for the observed slowdown: (1) defects within the ice in the suture zone cause a reduction in stress concentration ahead of the rift tip; (2) increased marine ice thickness in the rift path slows propagation. We show that the size-frequency distribution of icequakes approximately follows a power law, similar to the well-known Gutenberg-Richter law for earthquakes. However, large icequakes are not preceded by foreshocks nor are they followed by aftershocks. Thus rift-related seismicity differs from the classic foreshock and aftershock distribution that is characteristic of large earth quakes.


Nature | 2017

Heinrich events triggered by ocean forcing and modulated by isostatic adjustment

Jeremy N. Bassis; Sierra V. Petersen; L. Mac Cathles

During the last glacial period, the Laurentide Ice Sheet sporadically discharged huge numbers of icebergs through the Hudson Strait into the North Atlantic Ocean, leaving behind distinct layers of ice-rafted debris in the ocean sediments. Perplexingly, these massive discharge events—Heinrich events—occurred during the cold portion of millennial-scale climate oscillations called Dansgaard–Oeschger cycles. This is in contrast to the expectation that ice sheets expand in colder climates and shrink in warmer climates. Here we use an ice sheet model to show that the magnitude and timing of Heinrich events can be explained by the same processes that drive the retreat of modern marine-terminating glaciers. In our model, subsurface ocean warming associated with variations in the overturning circulation increases underwater melt along the calving face, triggering rapid margin retreat and increased iceberg discharge. On millennial timescales, isostatic adjustment causes the bed to uplift, isolating the terminus from subsurface warming and allowing the ice sheet to advance again until, at its most advanced position, it is poised for another Heinrich event. This mechanism not only explains the timing and magnitude of observed Heinrich events, but also suggests that ice sheets in contact with warming oceans may be vulnerable to catastrophic collapse even with little atmospheric warming.

Collaboration


Dive into the Jeremy N. Bassis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shad O'Neel

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

R Coleman

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge