Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy VanDerWal is active.

Publication


Featured researches published by Jeremy VanDerWal.


The American Naturalist | 2009

Abundance and the Environmental Niche: Environmental Suitability Estimated from Niche Models Predicts the Upper Limit of Local Abundance

Jeremy VanDerWal; Luke P. Shoo; Christopher N. Johnson; Stephen E. Williams

Ecologists seek to understand patterns of distribution and abundance of species. Studies of distribution often use occurrence data to build models of the environmental niche of a species. Environmental suitability (ES) derived from such models may be used to predict the potential distributions of species. The ability of such models to predict spatial patterns in abundance is unknown; we argue that there should be a positive relationship between ES and local abundance. This will be so if ES reflects how well the species’ physiological and ecological requirements are met at a site and if those factors also determine local abundance. However, the presence of other factors may indicate that potential abundance is not attained at all sites. Therefore, ES should predict the upper limit of abundance, and the observed relationship with ES should be wedge shaped. We tested the relationship of ES with local abundance for 69 rain forest vertebrates in the Australian wet tropics. Ordinary least squares and quantile regressions revealed a positive relationship between ES and local abundance for most species (>84%). The relationships for these species were wedge shaped. We conclude that ES modeled from presence‐only data provides useful information on spatial patterns of abundance, and we discuss implications of this in addressing important problems in ecology.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2009

Identification and dynamics of a cryptic suture zone in tropical rainforest

Craig Moritz; Jacob B. MacKenzie; Ben L. Phillips; Maria A. Tonione; N. Silva; Jeremy VanDerWal; Stephen E. Williams; Catherine H. Graham

Suture zones, shared regions of secondary contact between long-isolated lineages, are natural laboratories for studying divergence and speciation. For tropical rainforest, the existence of suture zones and their significance for speciation has been controversial. Using comparative phylogeographic evidence, we locate a morphologically cryptic suture zone in the Australian Wet Tropics rainforest. Fourteen out of 18 contacts involve morphologically cryptic phylogeographic lineages, with mtDNA sequence divergences ranging from 2 to 15 per cent. Contact zones are significantly clustered in a suture zone located between two major Quaternary refugia. Within this area, there is a trend for secondary contacts to occur in regions with low environmental suitability relative to both adjacent refugia and, by inference, the parental lineages. The extent and form of reproductive isolation among interacting lineages varies across species, ranging from random admixture to speciation, in one case via reinforcement. Comparative phylogeographic studies, combined with environmental analysis at a fine-scale and across varying climates, can generate new insights into suture zone formation and to diversification processes in species-rich tropical rainforests. As arenas for evolutionary experimentation, suture zones merit special attention for conservation.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2012

Latitude, elevational climatic zonation and speciation in New World vertebrates

Carlos Daniel Cadena; Kenneth H. Kozak; Juan Pablo Gomez; Juan L. Parra; Christy M. McCain; Rauri C. K. Bowie; Ana Carolina Carnaval; Craig Moritz; Carsten Rahbek; Trina E. Roberts; Nathan J. Sanders; Christopher J. Schneider; Jeremy VanDerWal; Kelly R. Zamudio; Catherine H. Graham

Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.


Proceedings of the Royal Society of London Series B: Biological Sciences | 2014

Prediction of phylogeographic endemism in an environmentally complex biome

Ana Carolina Carnaval; Eric Waltari; Miguel Trefaut Rodrigues; Dan F. Rosauer; Jeremy VanDerWal; Roberta Damasceno; Ivan Prates; Maria Strangas; Zoe Spanos; Danielle Rivera; Marcio R. Pie; Carina R. Firkowski; Marcos R. Bornschein; Luiz F. Ribeiro; Craig Moritz

Phylogeographic endemism, the degree to which the history of recently evolved lineages is spatially restricted, reflects fundamental evolutionary processes such as cryptic divergence, adaptation and biological responses to environmental heterogeneity. Attempts to explain the extraordinary diversity of the tropics, which often includes deep phylogeographic structure, frequently invoke interactions of climate variability across space, time and topography. To evaluate historical versus contemporary drivers of phylogeographic endemism in a tropical system, we analyse the effects of current and past climatic variation on the genetic diversity of 25 vertebrates in the Brazilian Atlantic rainforest. We identify two divergent bioclimatic domains within the forest and high turnover around the Rio Doce. Independent modelling of these domains demonstrates that endemism patterns are subject to different climatic drivers. Past climate dynamics, specifically areas of relative stability, predict phylogeographic endemism in the north. Conversely, contemporary climatic heterogeneity better explains endemism in the south. These results accord with recent speleothem and fossil pollen studies, suggesting that climatic variability through the last 250 kyr impacted the northern and the southern forests differently. Incorporating sub-regional differences in climate dynamics will enhance our ability to understand those processes shaping high phylogeographic and species endemism, in the Neotropics and beyond.


Conservation Biology | 2011

Environmental refuge from disease-driven amphibian extinction.

Robert Puschendorf; Scott D. Cashins; Keith R. McDonald; Lee F. Skerratt; Jeremy VanDerWal; Ross A. Alford

Species that are tolerant of broad environmental gradients may be less vulnerable to epizootic outbreaks of disease. Chytridriomycosis, caused by the fungus Batrachochytrium dendrobatidis, has been linked to extirpations and extinctions of amphibian species in many regions. The pathogen thrives in cool, moist environments, and high amphibian mortality rates have commonly occurred during chytridiomycosis outbreaks in amphibian populations in high-elevation tropical rainforests. In Australia several high-elevation species, including the armored mist frog (Litoria lorica), which is designated as critically endangered by the International Union for the Conservation of Nature (IUCN), were believed to have gone extinct during chytridiomycosis outbreaks in the 1980s and early 1990s. Species with greater elevational ranges disappeared from higher elevations, but remained common in the lowlands. In June 2008, we surveyed a stream in a high-elevation dry sclerophyll forest and discovered a previously unknown population of L. lorica and a population of the waterfall frog (Litoria nannotis). We conducted 6 additional surveys in June 2008, September 2008, March 2009, and August 2009. Prevalences of B. dendrobatidis infection (number infected per total sampled) were consistently high in frogs (mean 82.5%, minimum 69%) of both species and in tadpoles (100%) during both winter (starting July) and summer (starting February). However, no individuals of either species showed clinical signs of disease, and they remained abundant (3.25 - 8.75 individuals of L. lorica and 6.5-12.5 individuals of L. nannotis found/person/100 m over 13 months). The high-elevation dry sclerophyll site had little canopy cover, low annual precipitation, and a more defined dry season than a nearby rainforest site, where L. nannotis was more negatively affected by chytridiomycosis. We hypothesize this lack of canopy cover allowed the rocks on which frogs perched to warm up, thereby slowing growth and reproduction of the pathogen on the hosts. In addition, we suggest surveys for apparently extinct or rare species should not be limited to core environments.


Nature Climate Change | 2012

Vulnerability of cloud forest reserves in Mexico to climate change

Rocio Ponce-Reyes; Victor-Hugo Reynoso-Rosales; James E. M. Watson; Jeremy VanDerWal; Richard A. Fuller; Robert L. Pressey; Hugh P. Possingham

Tropical montane cloud forests are among the most vulnerable terrestrial ecosystems to climate change(1-3) owing to their restricted climatic requirements and their narrow and fragmented distribution(4). Although 12% of Mexican cloud forest is protected, it is not known whether reserves will ensure the persistence of the ecosystem and its endemic species under climate change. Here, we show that 68% of Mexicos cloud forest could vanish by 2080 because of climate change and more than 90% of cloud forest that is protected at present will not be climatically suitable for that ecosystem in 2080. Moreover, if we assume unprotected forests are cleared, 99% of the entire ecosystem could be lost through a combination of climate change and habitat loss, resulting in the extinction of about 70% of endemic cloud forest vertebrate species. Immediate action is required to minimize this loss-expansion of the protected-area estate in areas of low climate vulnerability is an urgent priority. Our analysis indicates that one key area for immediate protection is the Sierra de Juarez in Oaxaca. This area supports many endemic species and is expected to retain relatively large fragments of cloud forest despite rapid climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ecological specialization and population size in a biodiversity hotspot: how rare species avoid extinction

Stephen E. Williams; Yvette M. Williams; Jeremy VanDerWal; Joanne L. Isaac; Luke P. Shoo; Christopher N. Johnson

Species with narrow environmental niches typically have small geographic ranges. Small range size is, in turn, often associated with low local abundance. Together, these factors should mean that ecological specialists have very small total populations, putting them at high risk of extinction. But some specialized and geographically restricted species are ancient, and some ecological communities have high proportions of rare and specialized endemics. We studied niche characteristics and patterns of distribution and abundance of terrestrial vertebrates in the rainforests of the Australian Wet Tropics (AWT) to identify mechanisms by which rare species might resist extinction. We show that species with narrow environmental niches and small geographic ranges tend to have high and uniform local abundances. The compensation of geographic rarity by local abundance is exact, such that total population size in the rainforest vertebrates of the AWT is independent of environmental specialization. This effect would tend to help equalize extinction risk for specialists and generalists. Phylogenetic analysis suggests that environmental specialists have been gradually accumulating in this fauna, indicating that small range size/environmental specialization can be a successful trait as long as it is compensated for by demographic commonness. These results provide an explanation of how range-restricted specialists can persist for long periods, so that they now form a major component of high-diversity assemblages such as the AWT.


Philosophical Transactions of the Royal Society B | 2012

Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards

Craig Moritz; Gary M. Langham; Michael R. Kearney; Andrew K. Krockenberger; Jeremy VanDerWal; Stephen E. Williams

Tropical ectotherms are regarded as being especially threatened by global warming, but the extent to which populations vary in key thermal physiological traits is little known. In general, central and peripheral populations are most likely to differ where divergent selection pressures are un-opposed by gene flow. This leads to the prediction that persistent and long-isolated lineages in peripheral regions, as revealed by phylogeography, may differ physiologically from larger centrally located lineages. We test this prediction through comparative assays of critical thermal limits (minimum and maximum critical thermal limits, CTmin, CTmax) and optimal performance parameters (B80 and Topt) across central and peripheral lineages of three species of ground-dwelling skinks endemic to the rainforests of northeast Australia. Peripheral lineages show significantly increased optimal performance temperatures (Topt) relative to central populations as well as elevated CTmin, with the latter trait also inversely related to elevation. CTmax did not vary between central and peripheral lineages, but was higher in a forest edge species than in the forest interior species. The results suggest that long-isolated populations in peripheral rainforests harbour genotypes that confer resilience to future warming, emphasizing the need to protect these as well as larger central habitats.


PLOS ONE | 2015

Correlates of recent declines of rodents in northern and southern Australia : habitat structure is critical

Michael J. Lawes; Diana O. Fisher; Christopher N. Johnson; Simon P. Blomberg; Anke S. K. Frank; Susanne A. Fritz; Hamish McCallum; Jeremy VanDerWal; Brett Abbott; Sarah Legge; Mike Letnic; Colette R. Thomas; Nikki Thurgate; A. Fisher; Iain J. Gordon; Alex S. Kutt

Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.


The American Naturalist | 2011

Persistence in Peripheral Refugia Promotes Phenotypic Divergence and Speciation in a Rainforest Frog

Maria A. Tonione; Megan Higgie; Jason B. MacKenzie; Stephen E. Williams; Jeremy VanDerWal; Craig Moritz

It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species’ distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics [AWT]) with a well-established history of refugial isolation during Pleistocene glacial periods, we tested whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog Cophixalus ornatus. We combined paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call and contact zone analyses suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence and, potentially, speciation and direct attention toward incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation.

Collaboration


Dive into the Jeremy VanDerWal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke P. Shoo

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig Moritz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Alex S. Kutt

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brooke L. Bateman

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge