Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jernej Barbič is active.

Publication


Featured researches published by Jernej Barbič.


international conference on computer graphics and interactive techniques | 2005

Real-Time subspace integration for St. Venant-Kirchhoff deformable models

Jernej Barbič; Doug L. James

In this paper, we present an approach for fast subspace integration of reduced-coordinate nonlinear deformable models that is suitable for interactive applications in computer graphics and haptics. Our approach exploits dimensional model reduction to build reduced-coordinate deformable models for objects with complex geometry. We exploit the fact that model reduction on large deformation models with linear materials (as commonly used in graphics) result in internal force models that are simply cubic polynomials in reduced coordinates. Coefficients of these polynomials can be precomputed, for efficient runtime evaluation. This allows simulation of nonlinear dynamics using fast implicit Newmark subspace integrators, with subspace integration costs independent of geometric complexity. We present two useful approaches for generating low-dimensional subspace bases: modal derivatives and an interactive sketching technique. Mass-scaled principal component analysis (mass-PCA) is suggested for dimensionality reduction. Finally, several examples are given from computer animation to illustrate high performance, including force-feedback haptic rendering of a complicated object undergoing large deformations.


international conference on computer graphics and interactive techniques | 2006

Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources

Doug L. James; Jernej Barbič; Dinesh K. Pai

Simulating sounds produced by realistic vibrating objects is challenging because sound radiation involves complex diffraction and interreflection effects that are very perceptible and important. These wave phenomena are well understood, but have been largely ignored in computer graphics due to the high cost and complexity of computing them at audio rates.We describe a new algorithm for real-time synthesis of realistic sound radiation from rigid objects. We start by precomputing the linear vibration modes of an object, and then relate each mode to its sound pressure field, or acoustic transfer function, using standard methods from numerical acoustics. Each transfer function is then approximated to a specified accuracy using low-order multi-pole sources placed near the object. We provide a low-memory, multilevel, randomized algorithm for optimized source placement that is suitable for complex geometries. At runtime, we can simulate new interaction sounds by quickly summing contributions from each modes equivalent multipole sources. We can efficiently simulate global effects such as interreflection and changes in sound due to listener location. The simulation costs can be dynamically traded-off for sound quality. We present several examples of sound generation from physically based animations.


international conference on computer graphics and interactive techniques | 2012

FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction

Eftychios Sifakis; Jernej Barbič

A practical guide to finite-element-method (FEM) simulation of 3D deformable solids reviews essential offline FEM simulation techniques: complex nonlinear materials, invertible treatment of elasticity, and model-reduction techniques for real-time simulation. Simulations of deformable solids are important in many applications in computer graphics, including film special effects, computer games, and virtual surgery. FEM has become a popular method in many applications. Both offline simulation and real-time techniques have matured in computer graphics literature. This course is designed for attendees familiar with numerical simulation in computer graphics who would like to obtain a cohesive picture of the various FEM simulation methods available, their strengths and weaknesses, and their applicability in various simulation scenarios. The course is also a practical implementation guide for the visual-effects developer, offering a very lean yet adequate synopsis of the underlying mathematical theory. The first section introduces FEM deformable-object simulation and its fundamental concepts, such as deformation gradient, strain, stress, and elastic energy, discusses corotational FEM models, isotropic hyperelasticity, and numerical methods such as conjugate gradients and multigrid. The second section presents the state of the art in model reduction techniques for real-time FEM solid simulation. Topics include linear modal analysis, modal warping, subspace simulation, domain decomposition, and which techniques are suitable for which application.


international conference on computer graphics and interactive techniques | 2011

Real-time large-deformation substructuring

Jernej Barbič; Yili Zhao

This paper shows a method to extend 3D nonlinear elasticity model reduction to open-loop multi-level reduced deformable structures. Given a volumetric mesh, we decompose the mesh into several subdomains, build a reduced deformable model for each domain, and connect the domains using inertia coupling. This makes model reduction deformable simulations much more versatile: localized deformations can be supported without prohibitive computational costs, parts can be re-used and precomputation times shortened. Our method does not use constraints, and can handle large domain rigid body motion in addition to large deformations, due to our derivation of the gradient and Hessian of the rotation matrix in polar decomposition. We show real-time examples with multi-level domain hierarchies and hundreds of reduced degrees of freedom.


international conference on computer graphics and interactive techniques | 2009

Deformable object animation using reduced optimal control

Jernej Barbič; Marco da Silva; Jovan Popović

Keyframe animation is a common technique to generate animations of deformable characters and other soft bodies. With spline interpolation, however, it can be difficult to achieve secondary motion effects such as plausible dynamics when there are thousands of degrees of freedom to animate. Physical methods can provide more realism with less user effort, but it is challenging to apply them to quickly create specific animations that closely follow prescribed animator goals. We present a fast space-time optimization method to author physically based deformable object simulations that conform to animator-specified keyframes. We demonstrate our method with FEM deformable objects and mass-spring systems. Our method minimizes an objective function that penalizes the sum of keyframe deviations plus the deviation of the trajectory from physics. With existing methods, such minimizations operate in high dimensions, are slow, memory consuming, and prone to local minima. We demonstrate that significant computational speedups and robustness improvements can be achieved if the optimization problem is properly solved in a low-dimensional space. Selecting a low-dimensional space so that the intent of the animator is accommodated, and that at the same time space-time optimization is convergent and fast, is difficult. We present a method that generates a quality low-dimensional space using the given keyframes. It is then possible to find quality solutions to difficult space-time optimization problems robustly and in a manner of minutes.


symposium on computer animation | 2007

Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models

Jernej Barbič; Doug L. James

Real-time evaluation of distributed contact forces for rigid or deformable 3D objects is important for providing multi-sensory feedback in emerging real-time applications, such as 6-DoF haptic force-feedback rendering. Unfortunately, at very high temporal rates (1 kHz for haptics), there is often insufficient time to resolve distributed contact between geometrically complex objects. In this paper, we present a spatially and temporally adaptive sample-based approach to approximate contact forces under hard real-time constraints. The approach is CPU based, and supports contact between a rigid and a reduced deformable model with complex geometry. Penalty-based contact forces are efficiently resolved using a multi-resolution point-based representation for one object, and a signed-distance field for the other. Hard realtime approximation of distributed contact forces uses multi-level progressive point-contact sampling, and exploits temporal coherence, graceful degradation and other optimizations. We present several examples of 6-DoF haptic rendering of geometrically complex rigid and deformable objects in distributed contact at real-time kilohertz rates.


international conference on computer graphics and interactive techniques | 2010

Subspace self-collision culling

Jernej Barbič; Doug L. James

We show how to greatly accelerate self-collision detection (SCD) for reduced deformable models. Given a triangle mesh and a set of deformation modes, our method precomputes Subspace Self-Collision Culling (SSCC) certificates which, if satisfied, prove the absence of self-collisions for large parts of the model. At runtime, bounding volume hierarchies augmented with our certificates can aggressively cull overlap tests and reduce hierarchy updates. Our method supports both discrete and continuous SCD, can handle complex geometry, and makes no assumptions about geometric smoothness or normal bounds. It is particularly effective for simulations with modest subspace deformations, where it can often verify the absence of self-collisions in constant time. Our certificates enable low amortized costs, in time and across many objects in multi-body dynamics simulations. Finally, SSCC is effective enough to support self-collision tests at audio rates, which we demonstrate by producing the first sound simulations of clattering objects.


international conference on computer graphics and interactive techniques | 2008

Real-time control of physically based simulations using gentle forces

Jernej Barbič; Jovan Popović

Recent advances have brought real-time physically based simulation within reach, but simulations are still difficult to control in real time. We present interactive simulations of passive systems such as deformable solids or fluids that are not only fast, but also directable: they follow given input trajectories while simultaneously reacting to user input and other unexpected disturbances. We achieve such directability using a real-time controller that runs in tandem with a real-time physically based simulation. To avoid stiff and over-controlled systems where the natural dynamics are overpowered, the injection of control forces has to be minimized. This search for gentle forces can be made tractable in real-time by linearizing the system dynamics around the input trajectory, and then using a time-varying linear quadratic regulator to build the controller. We show examples of controlled complex deformable solids and fluids, demonstrating that our approach generates a requested fixed outcome for reasonable user inputs, while simultaneously providing runtime motion variety.


international conference on computer graphics and interactive techniques | 2012

Interactive editing of deformable simulations

Jernej Barbič; Funshing Sin; Eitan Grinspun

We present an interactive animation editor for complex deformable object animations. Given an existing animation, the artist directly manipulates the deformable body at any time frame, and the surrounding animation immediately adjusts in response. The automatic adjustments are designed to respect physics, preserve detail in both the input motion and geometry, respect prescribed bilateral contact constraints, and controllably and smoothly decay in space-time. While the utility of interactive editing for rigid body and articulated figure animations is widely recognized, a corresponding approach to deformable bodies has not been technically feasible before. We achieve interactive rates by combining spacetime model reduction, rotation-strain coordinate warping, linearized elasticity, and direct manipulation. This direct editing tool can serve the final stages of animation production, which often call for detailed, direct adjustments that are otherwise tedious to realize by re-simulation or frame-by-frame editing.


Computer Graphics Forum | 2013

Vega: Non-Linear FEM Deformable Object Simulator

Funshing Sin; D. Schroeder; Jernej Barbič

This practice and experience paper describes a robust C++ implementation of several non‐linear solid three‐dimensional deformable object strategies commonly employed in computer graphics, named the Vega finite element method (FEM) simulation library. Deformable models supported include co‐rotational linear FEM elasticity, Saint–Venant Kirchhoff FEM model, mass–spring system and invertible FEM models: neo‐Hookean, Saint–Venant Kirchhoff and Mooney–Rivlin. We provide several timestepping schemes, including implicit Newmark and backward Euler integrators, and explicit central differences. The implementation of material models is separated from integration, which makes it possible to employ our code not only for simulation, but also for deformable object control and shape modelling. We extensively compare the different material models and timestepping schemes. We provide practical experience and insight gained while using our code in several computer animation and simulation research projects.

Collaboration


Dive into the Jernej Barbič's collaboration.

Top Co-Authors

Avatar

Hongyi Xu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yijing Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yili Zhao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Funshing Sin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Paul E. Debevec

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Danyong Zhao

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Eftychios Sifakis

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Graham Fyffe

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hao Li

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge