Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen Eyckmans is active.

Publication


Featured researches published by Jeroen Eyckmans.


Developmental Cell | 2011

A hitchhiker's guide to mechanobiology.

Jeroen Eyckmans; Thomas Boudou; Xiang Yu; Christopher S. Chen

More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology.


Stem Cells and Development | 2012

Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension.

Yang Kao Wang; Xiang Yu; Daniel M. Cohen; Michele A. Wozniak; Michael T. Yang; Ling-Jie Gao; Jeroen Eyckmans; Christopher S. Chen

Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is classically thought to be mediated by different cytokines such as the bone morphogenetic proteins (BMPs). Here, we report that cell adhesion to extracellular matrix (ECM), and its effects on cell shape and cytoskeletal mechanics, regulates BMP-induced signaling and osteogenic differentiation of hMSCs. Using micropatterned substrates to progressively restrict cell spreading and flattening against ECM, we demonstrated that BMP-induced osteogenesis is progressively antagonized with decreased cell spreading. BMP triggered rapid and sustained RhoA/Rho-associated protein kinase (ROCK) activity and contractile tension only in spread cells, and this signaling was required for BMP-induced osteogenesis. Exploring the molecular basis for this effect, we found that restricting cell spreading, reducing ROCK signaling, or inhibiting cytoskeletal tension prevented BMP-induced SMA/mothers against decapentaplegic (SMAD)1 c-terminal phosphorylation, SMAD1 dimerization with SMAD4, and SMAD1 translocation into the nucleus. Together, these findings demonstrate the direct involvement of cell spreading and RhoA/ROCK-mediated cytoskeletal tension generation in BMP-induced signaling and early stages of in vitro osteogenesis, and highlight the essential interplay between biochemical and mechanical cues in stem cell differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Geometric control of vascular networks to enhance engineered tissue integration and function

Jan D. Baranski; Ritika R. Chaturvedi; Kelly R. Stevens; Jeroen Eyckmans; Brian Carvalho; Ricardo D. Solorzano; Michael T. Yang; Jordan S. Miller; Sangeeta N. Bhatia; Christopher S. Chen

Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned “cords” of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin–positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.


Stem Cells | 2006

Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells

An Van Damme; Lieven Thorrez; L Ma; Herman H. Vandenburgh; Jeroen Eyckmans; Francesco Dell'Accio; Cosimo De Bari; Frank P. Luyten; David Lillicrap; Desire Collen; Thierry Vandendriessche; Marinee Chuah

Human bone marrow (BM) mesenchymal stem/progenitor cells are potentially attractive targets for ex vivo gene therapy. The potential of lentiviral vectors for transducing BM mesenchymal cells was examined using a self‐inactivating vector that expressed the green fluorescent protein (GFP) from an internal cytomegalovirus (CMV) promoter. This vector was compared with oncoretroviral vectors expressing GFP from the CMV promoter or a modified long‐terminal repeat that had been optimized for long‐term expression in stem cells. The percentage of GFP‐positive cells was consistently higher following lentiviral versus oncoretroviral transduction, consistent with increased GFP mRNA levels and increased gene transfer efficiency measured by polymerase chain reaction and Southern blot analysis. In vitro GFP and FVIII expression lasted for several months post‐transduction, although expression slowly declined. The transduced cells retained their stem/progenitor cell properties since they were still capable of differentiating along adipogenic and osteogenic lineages in vitro while maintaining high GFP and FVIII expression levels. Implantation of lentivirally transduced human BM mesenchymal cells using collagen scaffolds into immunodeficient mice resulted in efficient engraftment of gene‐engineered cells and long‐term transgene expression in vivo. These biocompatible BM mesenchymal implants represent a reversible, safe, and versatile protein delivery approach because they can be retrieved in the event of an unexpected adverse reaction or when expression of the protein of interest is no longer required. In conclusion, efficient gene delivery with lentiviral vectors in conjunction with the use of bioengineered reversible scaffolds improves the therapeutic prospects of this novel approach for gene therapy, protein delivery, or tissue engineering.


Journal of Cellular and Molecular Medicine | 2009

A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling

Jeroen Eyckmans; Scott J. Roberts; Jan Schrooten; F.P. Luyten

In this study, we investigated a clinically relevant model of in vivo ectopic bone formation utilizing human periosteum derived cells (HPDCs) seeded in a Collagraft™ carrier and explored the mechanisms by which this process is driven. Bone formation occurred after eight weeks when a minimum of one million HPDCs was loaded on Collagraft™ carriers and implanted subcutaneously in NMRI nu/nu mice. De novo bone matrix, mainly secreted by the HPDCs, was found juxta‐proximal of the calcium phosphate (CaP) granules suggesting that CaP may have triggered the ‘osteoinductive program’. Indeed, removal of the CaP granules by ethylenediaminetetraacetic acid decalcification prior to cell seeding and implantation resulted in loss of bone formation. In addition, inhibition of endogenous bone morphogenetic protein and Wnt signalling by overexpression of the secreted antagonists Noggin and Frzb, respectively, also abrogated osteoinduction. Proliferation of the engrafted HPDCs was strongly reduced in the decalcified scaffolds or when seeded with adenovirus‐Noggin/Frzb transduced HPDCs indicating that cell division of the engrafted HPDCs is required for the direct bone formation cascade. These data suggest that this model of bone formation is similar to that observed during physiological intramembranous bone development and may be of importance when investigating tissue engineering strategies.


Cell Transplantation | 2010

Effects of MRI Contrast Agents on the Stem Cell Phenotype

Annelies Crabbe; Caroline Vandeputte; Tom Dresselaers; Angel Ayuso Sacido; José Manuel García Verdugo; Jeroen Eyckmans; Frank P. Luyten; Koen Van Laere; Catherine M. Verfaillie; Uwe Himmelreich

The ultimate therapy for ischemic stroke is restoration of blood supply in the ischemic region and regeneration of lost neural cells. This might be achieved by transplanting cells that differentiate into vascular or neuronal cell types, or secrete trophic factors that enhance self-renewal, recruitment, long-term survival, and functional integration of endogenous stem/progenitor cells. Experimental stroke models have been developed to determine potential beneficial effect of stem/progenitor cell-based therapies. To follow the fate of grafted cells in vivo, a number of noninvasive imaging approaches have been developed. Magnetic resonance imaging (MRI) is a high-resolution, clinically relevant method allowing in vivo monitoring of cells labeled with contrast agents. In this study, labeling efficiency of three different stem cell populations [mouse embryonic stem cells (mESC), rat multipotent adult progenitor cells (rMAPC), and mouse mesenchymal stem cells (mMSC)] with three different (ultra)small superparamagnetic iron oxide [(U)SPIO] particles (Resovist®, Endorem®, Sinerem®) was compared. Labeling efficiency with Resovist® and Endorem® differed significantly between the different stem cells. Labeling with (U)SPIOs in the range that allows detection of cells by in vivo MRI did not affect differentiation of stem cells when labeled with concentrations of particles needed for MRI-based visualization. Finally, we demonstrated that labeled rMAPC could be detected in vivo and that labeling did not interfere with their migration. We conclude that successful use of (U)SPIOs for MRI-based visualization will require assessment of the optimal (U)SPIO for each individual (stem) cell population to ensure the most sensitive detection without associated toxicity.


Biology Open | 2012

Adhesive and mechanical regulation of mesenchymal stem cell differentiation in human bone marrow and periosteum-derived progenitor cells

Jeroen Eyckmans; Grace L. Lin; Christopher S. Chen

Summary It has previously been demonstrated that cell shape can influence commitment of human bone marrow-derived mesenchymal stem cells (hBMCs) to adipogenic, osteogenic, chondrogenic, and other lineages. Human periosteum-derived cells (hPDCs) exhibit multipotency similar to hBMCs, but hPDCs may offer enhanced potential for osteogenesis and chondrogenesis given their apparent endogenous role in bone and cartilage repair in vivo. Here, we examined whether hPDC differentiation is regulated by adhesive and mechanical cues comparable to that reported for hBMC differentiation. When cultured in the appropriate induction media, hPDCs at high cell seeding density demonstrated enhanced levels of adipogenic or chondrogenic markers as compared with hPDCs at low cell seeding density. Cell seeding density correlated inversely with projected area of cell spreading, and directly limiting cell spreading with micropatterned substrates promoted adipogenesis or chondrogenesis while substrates promoting cell spreading supported osteogenesis. Interestingly, cell seeding density influenced differentiation through both changes in cell shape and non-shape-mediated effects: density-dependent adipogenesis and chondrogenesis were regulated primarily by cell shape whereas non-shape effects strongly influenced osteogenic potential. Inhibition of cytoskeletal contractility by adding the Rho kinase inhibitor Y27632 further enhanced adipogenic differentiation and discouraged osteogenic differentiation of hPDCs. Together, our results suggest that multipotent lineage decisions of hPDCs are impacted by cell adhesive and mechanical cues, though to different extents than hBMCs. Thus, future studies of hPDCs and other primary stem cell populations with clinical potential should consider varying biophysical metrics for more thorough optimization of stem cell differentiation.


Nature Communications | 2016

Cellular forces and matrix assembly coordinate fibrous tissue repair

Mahmut Selman Sakar; Jeroen Eyckmans; Rs Roel Pieters; Daniel Eberli; Bradley J. Nelson; Christopher S. Chen

Planar in vitro models have been invaluable tools to identify the mechanical basis of wound closure. Although these models may recapitulate closure dynamics of epithelial cell sheets, they fail to capture how a wounded fibrous tissue rebuilds its 3D architecture. Here we develop a 3D biomimetic model for soft tissue repair and demonstrate that fibroblasts ensconced in a collagen matrix rapidly close microsurgically induced defects within 24 h. Traction force microscopy and time-lapse imaging reveal that closure of gaps begins with contractility-mediated whole-tissue deformations. Subsequently, tangentially migrating fibroblasts along the wound edge tow and assemble a progressively thickening fibronectin template inside the gap that provide the substrate for cells to complete closure. Unlike previously reported mechanisms based on lamellipodial protrusions and purse-string contraction, our data reveal a mode of stromal closure in which coordination of tissue-scale deformations, matrix assembly and cell migration act together to restore 3D tissue architecture.


Nature | 2017

A non-canonical Notch complex regulates adherens junctions and vascular barrier function

William J. Polacheck; Matthew L. Kutys; Jinling Yang; Jeroen Eyckmans; Yinyu Wu; Hema Vasavada; Karen K. Hirschi; Christopher S. Chen

The vascular barrier that separates blood from tissues is actively regulated by the endothelium and is essential for transport, inflammation, and haemostasis. Haemodynamic shear stress plays a critical role in maintaining endothelial barrier function, but how this occurs remains unknown. Here we use an engineered organotypic model of perfused microvessels to show that activation of the transmembrane receptor NOTCH1 directly regulates vascular barrier function through a non-canonical, transcription-independent signalling mechanism that drives assembly of adherens junctions, and confirm these findings in mouse models. Shear stress triggers DLL4-dependent proteolytic activation of NOTCH1 to expose the transmembrane domain of NOTCH1. This domain mediates establishment of the endothelial barrier; expression of the transmembrane domain of NOTCH1 is sufficient to rescue defects in barrier function induced by knockout of NOTCH1. The transmembrane domain restores barrier function by catalysing the formation of a receptor complex in the plasma membrane consisting of vascular endothelial cadherin, the transmembrane protein tyrosine phosphatase LAR, and the RAC1 guanidine-exchange factor TRIO. This complex activates RAC1 to drive assembly of adherens junctions and establish barrier function. Canonical transcriptional signalling via Notch is highly conserved in metazoans and is required for many processes in vascular development, including arterial–venous differentiation, angiogenesis and remodelling. We establish the existence of a non-canonical cortical NOTCH1 signalling pathway that regulates vascular barrier function, and thus provide a mechanism by which a single receptor might link transcriptional programs with adhesive and cytoskeletal remodelling.


Biomacromolecules | 2011

Osteoconductive and bioresorbable composites based on poly(L,L-lactide) and pseudowollastonite: from synthesis and interfacial compatibilization to in vitro bioactivity and in vivo osseointegration studies.

Jean-Marie Raquez; D. T.-J. Barone; Z Luklinska; Olivier Persenaire; Alexandra Belayew; Jeroen Eyckmans; Jan Schrooten; Ph. Dubois

This contribution reports on the elaboration of novel bioresorbable composites consisting of pseudowollastonite (psW) (a silicate-based polycrystalline ceramic (α-CaSiO(3))) and poly(L,L-lactide) as a valuable polymeric candidate in bone-guided regeneration. These composites were prepared by direct melt-blending to avoid the use of organic solvents harmful for biomedical applications. Amphiphilic poly(ethylene oxide-b-L,L-lactide) diblock copolymers synthesized by ring-opening polymerization were added to psW-based composites to modulate the bioactivity of the composites. The bioactivity of the composites was first evaluated by monitoring the release of bioactive Ca(2+) and (SiO(4))(4-) ions as well as the concomitant formation of hydroxyapatite on the material surface after soaking them in physiological fluid. Subsequently, the composites were studied in vitro to evaluate their cytotoxicity in the presence of SaOS-2 osteoblastic cells and in vivo to assess their osteoconductivity in an orthotopic rat tibia model. This study provides a first insight into the use of direct melt-blended psW-poly(L,L-lactide) composites for bone-regeneration applications.

Collaboration


Dive into the Jeroen Eyckmans's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott J. Roberts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Frank P. Luyten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Schrooten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Van Oosterwyck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

F.P. Luyten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Demol

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Liesbet Geris

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge