Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F.P. Luyten is active.

Publication


Featured researches published by F.P. Luyten.


Acta Biomaterialia | 2012

Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies

Yoke Chin Chai; Aurélie Carlier; Johanna Bolander; Scott J. Roberts; Liesbet Geris; Jan Schrooten; H. Van Oosterwyck; F.P. Luyten

Calcium phosphate (CaP) has traditionally been used for the repair of bone defects because of its strong resemblance to the inorganic phase of bone matrix. Nowadays, a variety of natural or synthetic CaP-based biomaterials are produced and have been extensively used for dental and orthopaedic applications. This is justified by their biocompatibility, osteoconductivity and osteoinductivity (i.e. the intrinsic material property that initiates de novo bone formation), which are attributed to the chemical composition, surface topography, macro/microporosity and the dissolution kinetics. However, the exact molecular mechanism of action is unknown. This review paper first summarizes the most important aspects of bone biology in relation to CaP and the mechanisms of bone matrix mineralization. This is followed by the research findings on the effects of calcium (Ca²⁺) and phosphate (PO₄³⁻) ions on the migration, proliferation and differentiation of osteoblasts during in vivo bone formation and in vitro culture conditions. Further, the rationale of using CaP for bone regeneration is explained, focusing thereby specifically on the materials osteoinductive properties. Examples of different material forms and production techniques are given, with the emphasis on the state-of-the art in fine-tuning the physicochemical properties of CaP-based biomaterials for improved bone induction and the use of CaP as a delivery system for bone morphogenetic proteins. The use of computational models to simulate the CaP-driven osteogenesis is introduced as part of a bone tissue engineering strategy in order to facilitate the understanding of cell-material interactions and to gain further insight into the design and optimization of CaP-based bone reparative units. Finally, limitations and possible solutions related to current experimental and computational techniques are discussed.


Journal of Cellular and Molecular Medicine | 2009

A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signalling

Jeroen Eyckmans; Scott J. Roberts; Jan Schrooten; F.P. Luyten

In this study, we investigated a clinically relevant model of in vivo ectopic bone formation utilizing human periosteum derived cells (HPDCs) seeded in a Collagraft™ carrier and explored the mechanisms by which this process is driven. Bone formation occurred after eight weeks when a minimum of one million HPDCs was loaded on Collagraft™ carriers and implanted subcutaneously in NMRI nu/nu mice. De novo bone matrix, mainly secreted by the HPDCs, was found juxta‐proximal of the calcium phosphate (CaP) granules suggesting that CaP may have triggered the ‘osteoinductive program’. Indeed, removal of the CaP granules by ethylenediaminetetraacetic acid decalcification prior to cell seeding and implantation resulted in loss of bone formation. In addition, inhibition of endogenous bone morphogenetic protein and Wnt signalling by overexpression of the secreted antagonists Noggin and Frzb, respectively, also abrogated osteoinduction. Proliferation of the engrafted HPDCs was strongly reduced in the decalcified scaffolds or when seeded with adenovirus‐Noggin/Frzb transduced HPDCs indicating that cell division of the engrafted HPDCs is required for the direct bone formation cascade. These data suggest that this model of bone formation is similar to that observed during physiological intramembranous bone development and may be of importance when investigating tissue engineering strategies.


Biotechnology and Bioengineering | 2014

Spatial optimization in perfusion bioreactors improves bone tissue-engineered construct quality attributes

Ioannis Papantoniou; Yann Guyot; Maarten Sonnaert; Greet Kerckhofs; F.P. Luyten; Liesbet Geris; Jan Schrooten

Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow‐induced shear stresses throughout tissue‐engineered constructs. However, non‐uniform fluid‐flow profiles found in the perfusion chamber entrance region have been shown to affect tissue‐engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case‐study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo‐tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes. Biotechnol. Bioeng. 2014;111: 2560–2570.


Virchows Archiv | 2003

Immunohistochemical evaluation of cartilage-derived morphogenic protein-1 and -2 in normal human salivary glands and pleomorphic adenomas

Kimihide Kusafuka; F.P. Luyten; Raymond De Bondt; Yuji Hiraki; Chisa Shukunami; Teruo Kayano; Tamiko Takemura

Cartilage-derived morphogenic protein (CDMP)-1 and -2 belong to the bone morphogenetic protein (BMP) family in the transforming growth factor (TGF)-β superfamily. CDMP-1 and CDMP-2 were reported to play essential roles in limb cartilage and limb-joint formation in developing mice. Although pleomorphic adenoma of the salivary glands is an epithelial tumor, it frequently shows ectopic cartilaginous formation. These findings suggested that CDMP-1 and -2 may play essential roles in chondroid formation in salivary pleomorphic adenoma. To evaluate this hypothesis, we examined the expression and localization of CDMP-1 and -2 immunohistochemially in 20 normal human salivary glands and 35 pleomorphic adenomas. CDMP-1 was immunolocalized in the striated ducts and the intercalated ducts in the normal salivary glands. CDMP-1 was immunolocalized in the cuboidal neoplastic myoepithelial cells around the chondroid areas of the pleomorphic adenomas, whereas these molecules were not localized in the spindle-shaped neoplastic myoepithelial cells of the myxoid element or the lacuna cells of the chondroid element in these tumors. CDMP-2 was expressed neither in normal salivary glands nor any of the elements of the pleomorphic adenomas. Type-II collagen and aggrecan were immunolocalized throughout the matrix around the lacuna cells of the chondroid element, whereas type-X collagen was not immunlocalized in any epithelial or stromal elements, including the chondroid elements. Aggrecan was deposited not only on the chondroid matrix, but also on the myxoid stroma and intercellular spaces of the tubulo-glandular structures, whereas chondromodulin-I was deposited on the chondroid matrix. These results indicated that the cuboidal neoplastic myoepithelial cells around the chondroid areas expressed CDMP-1 and suggested that this molecule may play a role in the differentiation of neoplastic myoepithelial cells in pleomorphic adenoma. The phenotype of the lacuna cells was similar to that of mature to upper hypertrophic chondrocytes of the authentic cartilage. In conclusion, pleomorphic adenoma expressed CDMP-1 but not CDMP-2.


Scientific Reports | 2016

Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography

Greet Kerckhofs; Marjorie Durand; Roman Vangoitsenhoven; Carlos Marin; B. Van der Schueren; Geert Carmeliet; F.P. Luyten; Liesbet Geris; Katleen Vandamme

High resolution microfocus X-ray computed tomography (HR-microCT) was employed to characterize the structural alterations of the cortical and trabecular bone in a mouse model of obesity-driven type 2 diabetes (T2DM). C57Bl/6J mice were randomly assigned for 14 weeks to either a control diet-fed (CTRL) or a high fat diet (HFD)-fed group developing obesity, hyperglycaemia and insulin resistance. The HFD group showed an increased trabecular thickness and a decreased trabecular number compared to CTRL animals. Midshaft tibia intracortical porosity was assessed at two spatial image resolutions. At 2 μm scale, no change was observed in the intracortical structure. At 1 μm scale, a decrease in the cortical vascular porosity of the HFD bone was evidenced. The study of a group of 8 week old animals corresponding to animals at the start of the diet challenge revealed that the decreased vascular porosity was T2DM-dependant and not related to the ageing process. Our results offer an unprecedented ultra-characterization of the T2DM compromised skeletal micro-architecture and highlight an unrevealed T2DM-related decrease in the cortical vascular porosity, potentially affecting the bone health and fragility. Additionally, it provides some insights into the technical challenge facing the assessment of the rodent bone structure using HR-microCT imaging.


Acta Biomaterialia | 2016

Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation.

Greet Kerckhofs; Yoke Chin Chai; F.P. Luyten; Liesbet Geris

UNLABELLED Biomaterials are a key ingredient to the success of bone tissue engineering (TE), which focuses on the healing of bone defects by combining scaffolds with cells and/or growth factors. Due to the widely variable material characteristics and patient-specificities, however, current bone TE strategies still suffer from low repeatability and lack of robustness, which hamper clinical translation. Hence, optimal TE construct (i.e. cells and scaffold) characteristics are still under debate. This study aimed to reduce the material-specific variability for cell-based construct design, avoiding trial-and-error, by combining microCT characterization and empirical modelling as an innovative and robust screening approach. Via microCT characterization we have built a quantitative construct library of morphological and compositional properties of six CE approved CaP-based scaffolds (CopiOs®, BioOss™, Integra Mozaik™, chronOS Vivify, MBCP™ and ReproBone™), and of their bone forming capacity and in vivo scaffold degradation when combined with human periosteal derived cells (hPDCs). The empirical model, based on the construct library, allowed identification of the construct characteristics driving optimized bone formation, i.e. (a) the percentage of β-TCP and dibasic calcium phosphate, (b) the concavity of the CaP structure, (c) the average CaP structure thickness and (d) the seeded cell amount (taking into account the seeding efficiency). Additionally, the model allowed to quantitatively predict the bone forming response of different hPDC-CaP scaffold combinations, thus providing input for a more robust design of optimized constructs and avoiding trial-and error. This could improve and facilitate clinical translation. STATEMENT OF SIGNIFICANCE Biomaterials that support regenerative processes are a key ingredient for successful bone tissue engineering (TE). However, the optimal scaffold structure is still under debate. In this study, we have provided a useful innovative approach for robust screening of potential biomaterials or constructs (i.e. scaffolds seeded with cells and/or growth factors) by combining microCT characterization with empirical modelling. This novel approach leads to a better insight in the scaffold parameters influencing progenitor cell-mediated bone formation. Additionally, it serves as input for more controlled and robust design of optimized CaP-containing bone TE scaffolds. Hence, this novel approach could improve and facilitate clinical translation.


Osteoarthritis and Cartilage | 2017

Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat

Hiroki Katagiri; Luis Freitas Mendes; F.P. Luyten

Summary Background Joint trauma is predisposing to the incidence of osteoarthritis (OA) of the knee. There is a limited knowledge on the impact of posttraumatic osteochondral defects on the whole joint. This study was designed to define a critical size osteochondral defect in the knee of rats and to investigate a possible association between osteochondral defects and degeneration of the surrounding joint surface. Methods Cylindrical osteochondral defects of different sizes were created in the knee joint of rats. The natural course of these lesions was studied by macroscopic observation, histology, and immunohistochemistry. Gene expression of the articular cartilage surrounding the defects in vivo and of articular chondrocytes cultured in vitro in IL1β and fibroblast growth factor 2 (FGF2) supplemented media was evaluated by quantitative polymerase chain reaction (qPCR). Results In defects of 0.9 mm diameter, spontaneous joint surface healing was observed but also upward advancing of the subchondral bone plate at 16 weeks. Larger 1.4 mm diameter defects were critical size, not resulting in successful healing at any time point. Importantly, the articular cartilage surrounding the defects expressed FGF2 and IL1β, but not ACAN and Col2. Chondrocytes cultured in IL1β and FGF2 supplemented media lost the natural fibroblast growth factor receptors – FGFr1/FGFr3 balance and showed decreased viability. Conclusions A critical size osteochondral defect was defined as 1.4 mm in diameter in rat. Subchondral bone plate advancement occured rapidly. The articular cartilage surrounding osteochondral defects showed catabolic activity with expression of IL1β, FGF2 and a disturbed FGFr1/FGFr3 balance, potentially initiating a process of early osteoarthritic disease.


European Cells & Materials | 2011

Does tranexamic acid stabilised fibrin support the osteogenic differentiation of human periosteum derived cells

Jan Demol; Jeroen Eyckmans; Scott J. Roberts; F.P. Luyten; H Van Oosterwyck


Stem Cell Research & Therapy | 2018

Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo

Luis Freitas Mendes; Hiroki Katagiri; Wai Long Tam; Yoke Chin Chai; Liesbet Geris; S. J. Roberts; F.P. Luyten


2nd International Symposium on Biotechnology in Musculoskeletal Repair | 2008

Hydroxyapatite, "BMP and Wnt signaling are required in cell based ectopic bone formation"

Jeroen Eyckmans; Jan Schrooten; F.P. Luyten

Collaboration


Dive into the F.P. Luyten's collaboration.

Top Co-Authors

Avatar

Jan Schrooten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeroen Eyckmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Greet Kerckhofs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Saartje Impens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Scott J. Roberts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yoke Chin Chai

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Armaghan Mahmoudian

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

H. Van Oosterwyck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Hiroki Katagiri

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge