Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen F. J. Bogie is active.

Publication


Featured researches published by Jeroen F. J. Bogie.


Acta Neuropathologica | 2014

Macrophage subsets and microglia in multiple sclerosis

Jeroen F. J. Bogie; Piet Stinissen; Jerome J. A. Hendriks

Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.


ACS Applied Materials & Interfaces | 2013

Selective Identification of Macrophages and Cancer Cells Based on Thermal Transport through Surface-Imprinted Polymer Layers

Kasper Eersels; Bart van Grinsven; Anitha Ethirajan; Silke Timmermans; Kathia L. Jiménez Monroy; Jeroen F. J. Bogie; Sathya Punniyakoti; Thijs Vandenryt; Jerome J. A. Hendriks; Thomas J. Cleij; Mat J. A. P Daemen; Veerle Somers; Ward De Ceuninck; Patrick Wagner

In this article, we describe a novel straightforward method for the specific identification of viable cells (macrophages and cancer cell lines MCF-7 and Jurkat) in a buffer solution. The detection of the various cell types is based on changes of the heat transfer resistance at the solid-liquid interface of a thermal sensor device induced by binding of the cells to a surface-imprinted polymer layer covering an aluminum chip. We observed that the binding of cells to the polymer layer results in a measurable increase of heat transfer resistance, meaning that the cells act as a thermally insulating layer. The detection limit was found to be on the order of 10(4) cells/mL, and mutual cross-selectivity effects between the cells and different types of imprints were carefully characterized. Finally, a rinsing method was applied, allowing for the specific detection of cancer cells with their respective imprints while the cross-selectivity toward peripheral blood mononuclear cells was negligible. The concept of the sensor platform is fast and low-cost while allowing also for repetitive measurements.


Journal of Neuroimmune Pharmacology | 2014

High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System

Silke Timmermans; Jeroen F. J. Bogie; Tim Vanmierlo; Dieter Lütjohann; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.


Cell Transplantation | 2015

Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis.

Raf Donders; Marjan Vanheusden; Jeroen F. J. Bogie; Stylianos Ravanidis; Kristof Thewissen; Piet Stinissen; Wilfried Gyselaers; Jerome J. A. Hendriks; Niels Hellings

Umbilical cord matrix or Whartons jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinsons disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.


Acta neuropathologica communications | 2013

Myelin alters the inflammatory phenotype of macrophages by activating PPARs

Jeroen F. J. Bogie; Winde Jorissen; Jo Mailleux; Philip G. Nijland; Noam Zelcer; Tim Vanmierlo; Jack van Horssen; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

BackgroundFoamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear.ResultsWe demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain.ConclusionOur data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics.


Journal of Neuroinflammation | 2011

Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation

Jeroen F. J. Bogie; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

IntroductionMultiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) in which macrophages play a central role. Initially, macrophages where thought to be merely detrimental in MS, however, recent evidence suggests that their functional phenotype is altered following myelin phagocytosis. Macrophages that have phagocytosed myelin may be less inflammatory and may exert beneficial effects. The presence of myelin-containing macrophages in CNS-draining lymph nodes and perivascular spaces of MS patients suggests that these cells are ideally positioned to exert an immune regulatory role. Therefore we evaluated in this study the effect of myelin-phagocytosing macrophages on lymphocyte reactivity.MethodsThioglycolate-elicited rat peritoneal macrophages were loaded with myelin and cocultured with myelin-basic protein (MBP) or ovalbumin (OVA) reactive lymphocytes. Lymphocyte proliferation was determined by CFSE-labeling. The role of nitric oxide in regulating lymphocyte proliferation was assessed by addition of an inhibitor of inducible nitric oxide synthase to the coculture. In vivo immune regulation was investigated by treating MBP- and OVA-immunized animals subcutaneously with myelin. Cognate antigen specific lymphocyte proliferation and nitric oxide production were determined 9d post-immunization.ResultsIn this study we demonstrate that myelin-phagocytosing macrophages inhibit TCR-triggered lymphocyte proliferation in an antigen-independent manner. The observed immune suppression is mediated by an increase in NO production by myelin-phagocytosing macrophages upon contact with lymphocytes. Additionally, myelin delivery to primarily CD169+ macrophages in popliteal lymph nodes of OVA-immunized animals results in a reduced cognate antigen specific proliferation. In contrast to OVA-immunized animals, lymphocytes from MBP-immunized animals displayed an increased proliferation after stimulation with their cognate antigen, indicating that myelin-phagocytosing macrophages have dual effects depending on the specificity of surrounding lymphocytes.ConclusionsCollectively our data show that myelin phagocytosis leads to an altered macrophage function that inhibits lymphocyte proliferation. Additionally, results from this study indicate that myelin-phagocytosing macrophages fulfill a dual role in vivo. On one hand they aggravate autoimmunity by activating myelin-reactive lymphocytes and on the other hand they suppress lymphocyte reactivity by producing NO.


PLOS ONE | 2012

Myelin-derived lipids modulate macrophage activity by liver X receptor activation.

Jeroen F. J. Bogie; Silke Timmermans; Vân Anh Huynh-Thu; Alexandre Irrthum; H.J.M. Smeets; Jan Åke Gustafsson; Knut R. Steffensen; Monique Mulder; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis.


Langmuir | 2014

Heat-transfer resistance measurement method (HTM)-based cell detection at trace levels using a progressive enrichment approach with highly selective cell-binding surface imprints.

Karolien Bers; Kasper Eersels; Bart van Grinsven; Mat J. A. P Daemen; Jeroen F. J. Bogie; Jerome J. A. Hendriks; Evelien E. Bouwmans; Christiane Püttmann; Christoph Stein; Stefan Barth; Gerard M. J. Bos; Wilfred T. V. Germeraad; Ward De Ceuninck; Patrick Wagner

Surface-imprinted polymers allow for specific cell detection based on simultaneous recognition of the cell shape, cell size, and cell membrane functionalities by macromolecular cell imprints. In this study, the specificity of detection and the detection sensitivity for target cells within a pool of non-target cells were analyzed for a cell-specific surface-imprinted polymer combined with a heat-transfer-based read-out technique (HTM). A modified Chinese hamster ovarian cell line (CHO-ldlD) was used as a model system on which the transmembrane protein mucin-1 (MUC1) could be excessively expressed and for which the occurrence of MUC1 glycosylation could be controlled. In specific cancer cells, the overexpressed MUC1 protein typically shows an aberrant apical distribution and glycosylation. We show that surface-imprinted polymers discriminate between cell types that (1) only differ in the expression of a specific membrane protein (MUC1) or (2) only differ in the membrane protein being glycosylated or not. Moreover, surface-imprinted polymers of cells carrying different glycoforms of the same membrane protein do target both types of cells. These findings illustrate the high specificity of cell detection that can be reached by the structural imprinting of cells in polymer layers. Competitiveness between target and non-target cells was proven to negatively affect the detection sensitivity of target cells. Furthermore, we show that the detection sensitivity can be increased significantly by repetitively exposing the surface to the sample and eliminating non-specifically bound cells by flushing between consecutive cell exposures.


Progress in Lipid Research | 2015

Plant sterols: Friend or foe in CNS disorders?

Tim Vanmierlo; Jeroen F. J. Bogie; Jo Mailleux; Jasmine Vanmol; Dieter Lütjohann; Monique Mulder; Jerome J. A. Hendriks

In mammals, the central nervous system (CNS) is the most cholesterol rich organ by weight. Cholesterol metabolism is tightly regulated in the CNS and all cholesterol available is synthesized in situ. Deficits in cholesterol homeostasis at the level of synthesis, transport, or catabolism result in severe disorders featured by neurological disability. Recent studies indicate that a disturbed cholesterol metabolism is involved in CNS disorders, such as Alzheimers disease (AD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). In contrast to circulating cholesterol, dietary plant sterols, can cross the blood-brain barrier and accumulate in the membranes of CNS cells. Plant sterols are well-known for their ability to lower circulating cholesterol levels. The finding that they gain access to the CNS has fueled research focusing on the physiological roles of plant sterols in the healthy and diseased CNS. To date, both beneficial and detrimental effects of plant sterols on CNS disorders are defined. In this review, we discuss recent findings regarding the impact of plant sterols on homeostatic and pathogenic processes in the CNS, and elaborate on the therapeutic potential of plant sterols in CNS disorders.


Mediators of Inflammation | 2013

Local Overexpression of Interleukin-11 in the Central Nervous System Limits Demyelination and Enhances Remyelination

Anurag Maheshwari; Kris Janssens; Jeroen F. J. Bogie; Chris Van den Haute; Tom Struys; Ivo Lambrichts; Veerle Baekelandt; Piet Stinissen; Jerome J. A. Hendriks; Helena Slaets; Niels Hellings

Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1+ mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2+). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2+ OPCs into myelinating CC1+ OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination.

Collaboration


Dive into the Jeroen F. J. Bogie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Hellings

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar

Piet Stinissen

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raf Donders

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar

Silke Timmermans

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar

Winde Jorissen

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar

Jack van Horssen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge