Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Piet Stinissen is active.

Publication


Featured researches published by Piet Stinissen.


Journal of Neurocytology | 2003

Characterization of three human oligodendroglial cell lines as a model to study oligodendrocyte injury: morphology and oligodendrocyte-specific gene expression.

Mieke Buntinx; Joris Vanderlocht; Niels Hellings; Frank Vandenabeele; Ivo Lambrichts; Jef Raus; Marcel Ameloot; Piet Stinissen; Paul Steels

Oligodendrocytes, the myelin-forming cells of the central nervous system, are the target of pathogenic immune responses in multiple sclerosis. Primary cultures of human oligodendrocytes have been used to unravel the cellular and molecular mechanisms of immune-mediated injury of oligodendrocytes. However, these studies are hampered by the limited availability of viable human brain tissue. The present study was aimed at comparing the morphological and biochemical characteristics of the human oligodendroglial cell lines HOG, MO3.13 and KG-1C. We have determined oligodendrocyte-associated features of these lines and analyzed the degree to which they can be used as a model of human oligodendrocytes arrested at specific developmental stages. The oligodendroglial cell lines all exhibited markers of immature oligodendrocytes, such as CNPase and GalC, but not the astrocytic marker GFAP. Differentiation could be induced in HOG and MO3.13 cells, as was seen through a decrease in proliferation, an increase in process extension without formation of myelin sheets and up-regulation of genes associated with mature oligodendrocytes such as MBP and MOG. Microarray analysis revealed the expression of MAG, MOBP and OMG genes in HOG cells. The KG-1C cells displayed poor growth characteristics in the recommended conditions. In conclusion, our data show that the oligodendroglial cell lines HOG and MO3.13 can be used as a model of human oligodendrocytes ‘arrested’ in an immature developmental stage. Culturing in appropriate medium can induce further differentiation of these cells. These cell lines can therefore be applied as a model to study immune-mediated injury of oligodendrocytes in relation to disease.


Annals of the New York Academy of Sciences | 2005

Premature immunosenescence in rheumatoid arthritis and multiple sclerosis patients.

Marielle Thewissen; Loes Linsen; Veerle Somers; Piet Geusens; Jef Raus; Piet Stinissen

Abstract: Patients with T‐cell‐mediated autoimmune diseases show immune system abnormalities that resemble the typical characteristics of autoimmune dysfunction described in the elderly. In addition, the incidence of autoimmune disease increases with advancing age. To evaluate whether patients with rheumatoid arthritis (RA) and multiple sclerosis (MS) have premature immuno‐senescence, we measured two indicators of aging: the number of T‐cell‐receptor excision circles (TRECs) and the percentage of CD4+CD28null T cells. We studied them in the peripheral blood mononuclear cells (PBMCs) of 60 RA patients, 32 MS patients, and 40 healthy controls (HCs). We found that TREC numbers were lower in RA and MS patients than in age‐matched HCs, indicating premature thymic involution. Moreover, a subset of these patients contained age‐inappropriate high frequencies of CD4+CD28null T cells. This study provides evidence of premature immune system senescence in both RA and MS patients. Premature aging could be a risk factor for developing autoimmune disorders in genetically predisposed individuals in a susceptible environment.


Journal of Neuroimmunology | 2003

Functional properties of myelin oligodendrocyte glycoprotein-reactive T cells in multiple sclerosis patients and controls.

Annegret Van der Aa; Niels Hellings; Claude C. A. Bernard; Jef Raus; Piet Stinissen

Autoimmune T-cell reactivity to myelin components may be implicated in the initiation or maintenance of the inflammation leading to myelin destruction in multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG), a quantitatively minor myelin protein, is an important candidate autoantigen in MS. We studied T-cell responses to recombinant MOG (extracellular domain, rMOG) and a panel of four peptides within this domain (amino acids 1-22, 34-56, 64-86 and 74-96) in MS patients and healthy controls (NS). Frequency analysis of T cells reactive to rMOG as measured by IFN-gamma ELISPOT did not reveal significant differences between MS patients and controls. MOG-reactive T-cell lines and clones (TCL/TCC) were generated by stimulating PBMC of four MS patients and three healthy subjects with a cocktail of the four MOG peptides. The functional properties of 50 MOG peptide-reactive TCL/TCC obtained were studied. All TCL were TCR alpha beta+CD4+ and 20 TCL showed reactivity to MOG peptides 1-22, 13 to 34-56, 1 to 64-86 and 16 to 74-96. No significant differences in peptide recognition were observed between MS patients and controls. The T-cell receptor (TCR) hypervariable regions of MOG-reactive TCL/TCC showed a heterogeneous usage of various TCR V(-D)-J elements. The data provide no evidence for clonal expansions within the MOG-reactive T-cell repertoire of the two study groups. Intracellular cytokine analysis demonstrated predominantly Th1-TCC (IFN-gamma+/IL-4-) in MS patients, while most MOG-reactive TCC of control subjects had a mixed Th0/Th1 phenotype. Furthermore, the MS-derived MOG-reactive TCC produced increased levels of TNF-alpha upon antigen stimulation as compared to controls. Most of the MS-derived MOG-TCC induced specific cytolysis of autologous MOG-pulsed PBMC (9/11) while none of the MOG-TCC isolated from control subjects showed this cytotoxicity (0/8). In conclusion, although the frequency of anti-MOG T cells was similar in MS patients and controls, our data indicate potential differences in the functional properties of MOG TCL in MS patients versus healthy controls which may relate to their role in the disease process.


Journal of Neuroimmunology | 2002

Longitudinal study of antimyelin T-cell reactivity in relapsing-remitting multiple sclerosis: association with clinical and MRI activity.

Niels Hellings; Geert Gelin; Robert Medaer; Liesbeth Bruckers; Yvan Palmers; Jef Raus; Piet Stinissen

In multiple sclerosis (MS), T-cells are considered to be critical in coordinating an immunopathological cascade that results in myelin damage. We investigated whether clinical disease activity or brain inflammatory activity as measured by magnetic resonance imaging (MRI) was associated with changes in autoreactive T-cell reactivities in MS patients. To this end, a longitudinal study was performed in which T-cell-related immune parameters and clinical parameters (including MRI) were monitored in seven relapsing-remitting (RR) MS patients and two healthy controls with bimonthly intervals over a period of 18 months. The serial evaluation of antimyelin (MBP, PLP, MOG) T-cell responses revealed highly dynamic shifts and fluctuations from one pattern to another in a patient-dependent manner. In some of the patients, changes in T-cell-related immune variables were found to concur with MRI activity and generally preceded clinical relapses. These alterations include: increased number of myelin-reactive IFN-gamma secreting T-cells, detection of clonally expanded myelin-reactive T-cells, elevated proinflammatory and decreased antiinflammatory cytokine production, upregulation of ICAM-1 membrane expression and highly increased serum levels of soluble VCAM-1. However, not all exacerbations and MRI changes were associated with changes in antimyelin reactivity. Some of the observed immune alterations were also detected in the healthy controls, indicating that additional regulatory mechanisms-which may be defective in MS-play a role in the downregulation of potentially pathological T-cell responses. In conclusion, this study provides further support for an important role of myelin-reactive T-cells in the pathogenesis of MS. In addition, the observed dynamic changes in the antimyelin T-cell reactivity pattern may be a major obstacle for the development of antigen-specific immunotherapies.


Clinical and Experimental Immunology | 2003

T cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T cells: results from a pilot study

A. Van Der Aa; Niels Hellings; R. Medaer; G. Gelin; Y. Palmers; Jef Raus; Piet Stinissen

Myelin‐reactive T cells are considered to play an essential role in the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. We have previously studied the effects of T cell vaccination (TCV), a procedure by which MS patients are immunized with attenuated autologous myelin basic protein (MBP)‐reactive T cell clones. Because several myelin antigens are described as potential autoantigens for MS, T cell vaccines incorporating a broad panel of antimyelin reactivities may have therapeutic effects. Previous reports have shown an accumulation of activated T cells recognizing multiple myelin antigens in the cerebrospinal fluid (CSF) of MS patients. We conducted a pilot clinical trial of TCV with activated CD4+ T cells derived from CSF in five MS patients (four RR, one CP) to study safety, feasibility and immune effects of TCV. CSF lymphocytes were cultured in the presence of rIL‐2 and depleted for CD8 cells. After 5–8u2003weeks CSF T cell lines (TCL) were almost pure TCRαβ+CD4+ cells of the Th1/Th0 type. The TCL showed reactivity to MBP, MOG and/or PLP as tested by Elispot and had a restricted clonality. Three immunizations with irradiated CSF vaccines (10 million cells) were administered with an interval of 2u2003months. The vaccinations were tolerated well and no toxicity or adverse effects were reported. The data from this small open‐label study cannot be used to support efficacy. However, all patients remained clinically stable or had reduced EDSS with no relapses during or after the treatment. Proliferative responses against the CSF vaccine were observed in 3/5 patients. Anti‐ergotypic responses were observed in all patients. Anti‐MBP/PLP/MOG reactivities remained low or were reduced in all patients. Based on these encouraging results, we recently initiated a double‐blind placebo‐controlled trial with 60 MS patients to study the effects of TCV with CSF‐derived vaccines in early RR MS patients.


Journal of Neuroimmune Pharmacology | 2014

High Fat Diet Exacerbates Neuroinflammation in an Animal Model of Multiple Sclerosis by Activation of the Renin Angiotensin System

Silke Timmermans; Jeroen F. J. Bogie; Tim Vanmierlo; Dieter Lütjohann; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

Epidemiological studies suggest a positive correlation between the incidence and severity of multiple sclerosis (MS) and the intake of fatty acids. It remains to be clarified whether high fat diet (HFD) indeed can exacerbate the disease pathology associated with MS and what the underlying mechanisms are. In this study, we determined the influence of HFD on the severity and pathology of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Mice were fed either normal diet (ND) or HFD and subsequently induced with EAE. Immunohistochemical staining and real-time PCR were used to determine immune cell infiltration and inflammatory mediators in the central nervous system (CNS). Our data show that HFD increases immune cell infiltration and inflammatory mediator production in the CNS and thereby aggravates EAE. Moreover, our data demonstrate that activation of the renin angiotensin system (RAS) is associated with the HFD-mediated effects on EAE severity. These results show that HFD exacerbates an autoreactive immune response within the CNS. This indicates that diets containing excess fat have a significant influence on neuroinflammation in EAE, which may have important implications for the treatment and prevention of neuroinflammatory disorders.


Journal of Neuroimmunology | 2008

Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging

Kurt Baeten; Jerome J. A. Hendriks; Niels Hellings; Evi Theunissen; Joris Vanderlocht; Leen De Ryck; Jan Gelan; Piet Stinissen; Peter Adriaensens

Macrophages are considered to be the predominant effector cells in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Ultra small particles of iron oxide (USPIO) can be used to detect macrophage infiltrates in the CNS with magnetic resonance imaging (MRI). Here, we investigated whether the kinetics of lesion formation in EAE can be visualised by altering the time point of USPIO injection and the time interval between particle injection and MRI. When USPIO are systemically injected 24 h before MRI, hypo intense regions are detected in different brain regions depending on the disease stage. These regions correspond to sites of macrophage infiltration. A more complete visualisation of sites of inflammation is accomplished by USPIO injection at disease onset and postponing MRI to top of disease. This study demonstrates that the distribution pattern and amount of inflammatory lesions detected with USPIO, depends on timing of USPIO administration and subsequent MRI. These findings are important for a correct application and interpretation of USPIO dependent contrast imaging of CNS inflammation.


Cell Transplantation | 2015

Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis.

Raf Donders; Marjan Vanheusden; Jeroen F. J. Bogie; Stylianos Ravanidis; Kristof Thewissen; Piet Stinissen; Wilfried Gyselaers; Jerome J. A. Hendriks; Niels Hellings

Umbilical cord matrix or Whartons jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinsons disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity. Collectively, we show that WJ-MSCs have trophic support properties and effectively modulate immune cell functioning both in vitro and in the EAE model, suggesting WJ-MSC may hold promise for MS therapy. Future research is needed to optimize survival of stem cells and enhance clinical durability.


Acta neuropathologica communications | 2013

Myelin alters the inflammatory phenotype of macrophages by activating PPARs

Jeroen F. J. Bogie; Winde Jorissen; Jo Mailleux; Philip G. Nijland; Noam Zelcer; Tim Vanmierlo; Jack van Horssen; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

BackgroundFoamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear.ResultsWe demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain.ConclusionOur data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics.


Journal of Neuroinflammation | 2011

Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation

Jeroen F. J. Bogie; Piet Stinissen; Niels Hellings; Jerome J. A. Hendriks

IntroductionMultiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system (CNS) in which macrophages play a central role. Initially, macrophages where thought to be merely detrimental in MS, however, recent evidence suggests that their functional phenotype is altered following myelin phagocytosis. Macrophages that have phagocytosed myelin may be less inflammatory and may exert beneficial effects. The presence of myelin-containing macrophages in CNS-draining lymph nodes and perivascular spaces of MS patients suggests that these cells are ideally positioned to exert an immune regulatory role. Therefore we evaluated in this study the effect of myelin-phagocytosing macrophages on lymphocyte reactivity.MethodsThioglycolate-elicited rat peritoneal macrophages were loaded with myelin and cocultured with myelin-basic protein (MBP) or ovalbumin (OVA) reactive lymphocytes. Lymphocyte proliferation was determined by CFSE-labeling. The role of nitric oxide in regulating lymphocyte proliferation was assessed by addition of an inhibitor of inducible nitric oxide synthase to the coculture. In vivo immune regulation was investigated by treating MBP- and OVA-immunized animals subcutaneously with myelin. Cognate antigen specific lymphocyte proliferation and nitric oxide production were determined 9d post-immunization.ResultsIn this study we demonstrate that myelin-phagocytosing macrophages inhibit TCR-triggered lymphocyte proliferation in an antigen-independent manner. The observed immune suppression is mediated by an increase in NO production by myelin-phagocytosing macrophages upon contact with lymphocytes. Additionally, myelin delivery to primarily CD169+ macrophages in popliteal lymph nodes of OVA-immunized animals results in a reduced cognate antigen specific proliferation. In contrast to OVA-immunized animals, lymphocytes from MBP-immunized animals displayed an increased proliferation after stimulation with their cognate antigen, indicating that myelin-phagocytosing macrophages have dual effects depending on the specificity of surrounding lymphocytes.ConclusionsCollectively our data show that myelin phagocytosis leads to an altered macrophage function that inhibits lymphocyte proliferation. Additionally, results from this study indicate that myelin-phagocytosing macrophages fulfill a dual role in vivo. On one hand they aggravate autoimmunity by activating myelin-reactive lymphocytes and on the other hand they suppress lymphocyte reactivity by producing NO.

Collaboration


Dive into the Piet Stinissen's collaboration.

Top Co-Authors

Avatar

Niels Hellings

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar

Jef Raus

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Van Wijmeersch

Transnational University Limburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piet Geusens

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge