Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen Kool is active.

Publication


Featured researches published by Jeroen Kool.


Analytical Chemistry | 2008

Development of a Selective ESI-MS Derivatization Reagent: Synthesis and Optimization for the Analysis of Aldehydes in Biological Mixtures

Mark Eggink; Maikel Wijtmans; Reggy Ekkebus; Henk Lingeman; Iwan J. P. de Esch; Jeroen Kool; W.M.A. Niessen; Hubertus Irth

In LC-MS, derivatization is primarily used to improve ionization characteristics, especially for analytes that are not (efficiently) ionized by ESI or APCI such as aldehydes, sugars, and steroids. Derivatization strategies are then directed at the incorporation of a group with a permanent charge. A compound class that typically requires derivatization prior to LC-MS is the group of small aliphatic aldehydes that are, for instance, analyzed as the key biomarkers for lipid peroxidation in organisms. Here we report the development of a new tailor-made, highly sensitive, and selective derivatization agent 4-(2-(trimethylammonio)ethoxy)benzenaminium halide (4-APC) for the quantification of aldehydes in biological matrixes with positive ESI-MS/ MS without additional extraction procedures. 4-APC possesses an aniline moiety for a fast selective reaction with aliphatic aldehydes as well as a quaternary ammonium group for improved MS sensitivity. The derivatization reaction is a convenient one-pot reaction at a mild pH (5.7) and temperature (10 degrees C). As a result, an in-vial derivatization can be performed before analysis with an LC-MS/MS system. All aldehydes are derivatized within 30 min to a plateau, except malondialdehyde, which requires 300 min to reach a plateau. All derivatized aldehydes are stable for at least 35 h. Linearity was established between 10 and 500 nM and the limits of detection were in the 3-33 nM range for the aldehyde derivatives. Furthermore, the chosen design of these structures allows tandem MS to be used to monitor the typical losses of 59 and 87 from aldehyde derivatives, thereby enabling screening for aldehydes. Finally, of all aldehydes, pentanal and hexanal were detected at elevated levels in pooled healthy human urine samples.


Analytical and Bioanalytical Chemistry | 2011

Recent developments in protein–ligand affinity mass spectrometry

Niels Jonker; Jeroen Kool; Hubertus Irth; W.M.A. Niessen

AbstractThis review provides an overview of direct and indirect technologies to screen protein–ligand interactions with mass spectrometry. These technologies have as a key feature the selection or affinity purification of ligands in mixtures prior to detection. Specific fields of interest for these technologies are metabolic profiling of bioactive metabolites, natural extract screening, and the screening of libraries for bioactives, such as parallel synthesis libraries and small combichem libraries. The review addresses the principles of each of the methods discussed, with a focus on developments in recent years, and the applicability of the methods to lead generation and development in drug discovery. FigureSchematic view of the principle of filtration based 96-well affinity selection MS binding assays


Analytical Chemistry | 2009

Online magnetic bead dynamic protein-affinity selection coupled to LC-MS for the screening of pharmacologically active compounds

Niels Jonker; A. Kretschmer; Jeroen Kool; A. Fernandez; Dick-Paul Kloos; Johannes G. Krabbe; Henk Lingeman; Hubertus Irth

The online, selective isolation of protein-ligand complexes using cobalt(II)-coated paramagnetic affinity beads (PABs) and subsequent liquid chromatography-mass spectrometry (LC-MS) determination of specifically bound ligands is described. After in-solution incubation of an analyte mixture with His-tagged target proteins, protein-analyte complexes are mixed with the Co(II)-PABs and subsequently injected into an in-house built magnetic trapping device. Bioactive ligands bound to the protein-Co(II)-PABs are retained in the magnetic field of the trapping device while inactive compounds are removed by washing with a pH 7.4 buffer. Active ligands are online eluted toward the LC-MS system using a pH shift. In the final step of the procedure, the protein-Co(II)-PABs are flushed to waste by temporarily lowering the magnetic field. The proof-of-principle is demonstrated by using commercially available Co(II)-PABs in combination with the His-tagged human estrogen-receptor ligand-binding domain. The system is characterized with a number of estrogenic ligands and nonbinding pharmaceutical compounds. The affinities of the test compounds varied from the high micromolar to the subnanomolar range. Typical detection limits are in the range from 20 to 80 nmol/L. The system is able to identify binders in mixtures of compounds, with an analysis time of 9.5 min per mixture. The standard deviation over 24 h is 9%.


Analytical and Bioanalytical Chemistry | 2011

Advances in mass spectrometry-based post-column bioaffinity profiling of mixtures

Jeroen Kool; Martin Giera; Hubertus Irth; W.M.A. Niessen

AbstractIn the screening of complex mixtures, for example combinatorial libraries, natural extracts, and metabolic incubations, different approaches are used for integrated bioaffinity screening. Four major strategies can be used for screening of bioactive mixtures for protein targets—pre-column and post-column off-line, at-line, and on-line strategies. The focus of this review is on recent developments in post-column on-line screening, and the role of mass spectrometry (MS) in these systems. On-line screening systems integrate separation sciences, mass spectrometry, and biochemical methodology, enabling screening for active compounds in complex mixtures. There are three main variants of on-line MS based bioassays: the mass spectrometer is used for ligand identification only; the mass spectrometer is used for both ligand identification and bioassay readout; or MS detection is conducted in parallel with at-line microfractionation with off-line bioaffinity analysis. On the basis of the different fields of application of on-line screening, the principles are explained and their usefulness in the different fields of drug research is critically evaluated. Furthermore, off-line screening is discussed briefly with the on-line and at-line approaches. Schematic view of an on-line bioaffinity analysis or HRS setup with MS based bioassay detection


Journal of Chromatography B | 2010

Determination and identification of estrogenic compounds generated with biosynthetic enzymes using hyphenated screening assays, high resolution mass spectrometry and off-line NMR.

J.S.B. de Vlieger; A.J. Kolkman; Kirsten A. M. Ampt; Jan N. M. Commandeur; Nico P. E. Vermeulen; Jeroen Kool; Sybren S. Wijmenga; W.M.A. Niessen; Hubertus Irth; Maarten Honing

This paper describes the determination and identification of active and inactive estrogenic compounds produced by biosynthetic methods. A hyphenated screening assay towards the human estrogen receptor ligand binding domain (hER)alpha and hERbeta integrating target-ligand interactions and liquid chromatography-high resolution mass spectrometry was used. With this approach, information on both biologic activity and structure identity of compounds produced by bacterial mutants of cytochrome P450s was obtained in parallel. Initial structure identification was achieved by high resolution MS/MS, while for full structure determination, P450 incubations were scaled up and the produced entities were purified using preparative liquid chromatography with automated fraction collection. NMR spectroscopy was performed on all fractions for 3D structure analysis; this included 1D-(1)H, 2D-COSY, 2D-NOESY, and (1)H-(13)C-HSQC experiments. This multidimensional screening approach enabled the detection of low abundant biotransformation products which were not suitable for detection in either one of its single components. In total, the analytical scale biosynthesis produced over 85 compounds from 6 different starting templates. Inter- and intra-day variation of the biochemical signals in the dual receptor affinity detection system was less than 5%. The multi-target screening approach combined with full structure characterization based on high resolution MS(/MS) and NMR spectroscopy demonstrated in this paper can generally be applied to e.g. metabolism studies and compound-library screening.


Analytical and Bioanalytical Chemistry | 2009

Analysis of glutathione adducts of patulin by means of liquid chromatography (HPLC) with biochemical detection (BCD) and electrospray ionization tandem mass spectrometry (ESI-MS/MS)

Nils Helge Schebb; Helene Faber; Ronald Maul; Ferry Heus; Jeroen Kool; Hubertus Irth; Uwe Karst

A novel method for the identification of glutathione/electrophile adducts that are inhibiting glutathione-S-transferase (GST) activity was developed and applied for the analysis of the mycotoxin patulin. The method is based on high-performance liquid chromatography (HPLC) coupled to a continuous-flow enzyme reactor serving as biochemical detector (BCD) in parallel to electrospray mass spectrometric detection (ESI-MS). This HPLC-BCD technique combines a separation step and the detection of the inhibition and is therefore ideally suited for the analysis of the activity of single patulin/glutathione adducts within a complex mixture of adducts. Two out of at least 15 detected patulin–glutathione adducts showed strong GST inhibition. In ESI-MS, the inhibitory active adducts were characterized by [M + H]+ ions with m/z 462.1138 and m/z 741.2011, respectively. They could be identified as a dihydropyranone adduct containing one molecule glutathione and a ketohexanoic acid bearing two glutathione molecules.Graphical AbstractOnlineAbstractFigure


Journal of Medicinal Chemistry | 2010

Online Fluorescence Enhancement Assay for the Acetylcholine Binding Protein with Parallel Mass Spectrometric Identification

Jeroen Kool; Gerdien E. de Kloe; Ben Bruyneel; Jon S.B. de Vlieger; Kim Retra; Maikel Wijtmans; René van Elk; August B. Smit; Rob Leurs; Henk Lingeman; Iwan J. P. de Esch; Hubertus Irth

The acetylcholine binding protein (AChBP) is considered an analogue for the ligand-binding domain of neuronal nicotinic acetylcholine receptors (nAChRs). Its stability and solubility in aqueous buffer allowed the development of an online bioaffinity analysis system. For this, a tracer ligand which displays enhanced fluorescence in the binding pocket of AChBP was identified from a concise series of synthetic benzylidene anabaseines. Evaluation and optimization of the bioaffinity assay was performed in a convenient microplate reader format and subsequently transferred to the online format. The high reproducibility has the prospect of estimating the affinities of ligands from an in-house drug discovery library injected in one known concentration. Furthermore, the online bioaffinity analysis system could also be applied to mixture analysis by using gradient HPLC. This led to the possibility of affinity ranking of ligands in mixtures with parallel high-resolution mass spectrometry for compound identification.


Analytical and Bioanalytical Chemistry | 2010

Development of an online p38α mitogen-activated protein kinase binding assay and integration of LC-HR-MS.

David Falck; Jon S.B. de Vlieger; W.M.A. Niessen; Jeroen Kool; Maarten Honing; Martin Giera; Hubertus Irth

AbstractA high-resolution screening method was developed for the p38α mitogen-activated protein kinase to detect and identify small-molecule binders. Its central role in inflammatory diseases makes this enzyme a very important drug target. The setup integrates separation by high-performance liquid chromatography with two parallel detection techniques. High-resolution mass spectrometry gives structural information to identify small molecules while an online enzyme binding detection method provides data on p38α binding. The separation step allows the individual assessment of compounds in a mixture and links affinity and structure information via the retention time. Enzyme binding detection was achieved with a competitive binding assay based on fluorescence enhancement which has a simple principle, is inexpensive, and is easy to interpret. The concentrations of p38α and the fluorescence tracer SK&F86002 were optimized as well as incubation temperature, formic acid content of the LC eluents, and the material of the incubation tubing. The latter notably improved the screening of highly lipophilic compounds. For optimization and validation purposes, the known kinase inhibitors BIRB796, TAK715, and MAPKI1 were used among others. The result is a high-quality assay with Z′ factors around 0.8, which is suitable for semi-quantitative affinity measurements and applicable to various binding modes. Furthermore, the integrated approach gives affinity data on individual compounds instead of averaged ones for mixtures. FigureP38 α online screening platform


Analytical and Bioanalytical Chemistry | 2011

Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods

Jeroen Kool; Niels Jonker; Hubertus Irth; W.M.A. Niessen

AbstractThis review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS. FigureApproach for analysis of protein complexes with MS


Journal of Biomolecular Screening | 2005

Development of a novel cytochrome P450 bioaffinity detection system coupled online to gradient reversed-phase high-performance liquid chromatography

Jeroen Kool; Sebastiaan M. van Liempd; Rawi Ramautar; Tim Schenk; John H.N. Meerman; Hubertus Irth; Jan N. M. Commandeur; Nico P. E. Vermeulen

A high-resolution screening platform, coupling online affinity detection for mammalian cytochrome P450s (Cyt P450s) to gradient reversed-phase high-performance liquid chromatography (HPLC), is described. To this end, the onlineCyt P450 enzyme affinity detection (EAD) system was optimized for enzyme (β-NF-induced rat liver microsomes), probe substrate (ethoxyresorufine), and organic modifier (methanol or acetonitrile). The optimized Cyt P450 EAD system has first been evaluated in a flow injection analysis (FIA) mode with 7 known ligands of Cyt P450 1A1/1A2 (β-naphthoflavone, ßnaphthoflavone, ellipticine, 9-hydroxy-ellipticine, fluvoxamine, caffein, and phenacetin). Subsequently, IC 50 valueswere online in FIA-mode determined and compared with those obtained with standardmicrosomal assay conditions. The IC 50 values obtained with the online Cyt P450 EAD system agreed well with the IC 50 values obtained in the standard assays. For highaffinity ligands ofCyt P450 1A1/1A2, detection limits of 1 to 3 pmol injected (n= 3; signal to noise [S/N] = 3) were obtained. The individual inhibitory properties of ligands in mixtures of the ligands were subsequently investigated using an optimized Cyt P450 EAD system online coupled to gradient HPLC. Using the integrated online gradient HPLC Cyt P450 EAD platform, detection limits of 10 to 25 pmol injected (n= 1; S/N= 3) were obtained for high-affinity ligands. It is concluded that this novel screening technology offers new perspectives for rapid and sensitive screening of individual compounds in mixtures exhibiting affinity for liver microsomal Cyt P450s.

Collaboration


Dive into the Jeroen Kool's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferry Heus

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

David Falck

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

M.H. Lamoree

VU University Amsterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge