Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeroen Saeij is active.

Publication


Featured researches published by Jeroen Saeij.


Journal of Experimental Medicine | 2011

Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein

Emily E. Rosowski; Diana Lu; Lindsay Julien; Lauren Rodda; Rogier A. Gaiser; Kirk D. C. Jensen; Jeroen Saeij

The Toxoplasma gondii granule protein GRA15 activates the NF-κB pathway.


Trends in Parasitology | 2011

Toxoplasma gondii effectors are master regulators of the inflammatory response

Mariane B. Melo; Kirk D. C. Jensen; Jeroen Saeij

Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this, it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the immune response of the host, and in some cases provokes it, through the use of specific parasite effector proteins. An emerging theme from these discoveries is that Toxoplasma effectors are master regulators of the pro-inflammatory response, which elicits many of the toxoplasmacidal mechanisms of the host. We speculate that combinations of these effectors present in certain Toxoplasma strains work to maintain an optimal parasite burden in different hosts to ensure parasite transmission.


Mbio | 2014

Dual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii

Gezahegn Gorfu; Kimberly M. Cirelli; Mariane B. Melo; Katrin D. Mayer-Barber; Devorah Crown; Beverly H. Koller; Seth L. Masters; Alan Sher; Stephen H. Leppla; Mahtab Moayeri; Jeroen Saeij; Michael E. Grigg

ABSTRACT Induction of immunity that limits Toxoplasma gondii infection in mice is critically dependent on the activation of the innate immune response. In this study, we investigated the role of cytoplasmic nucleotide-binding domain and leucine-rich repeat containing a pyrin domain (NLRP) inflammasome sensors during acute toxoplasmosis in mice. We show that in vitro Toxoplasma infection of murine bone marrow-derived macrophages activates the NLRP3 inflammasome, resulting in the rapid production and cleavage of interleukin-1β (IL-1β), with no measurable cleavage of IL-18 and no pyroptosis. Paradoxically, Toxoplasma-infected mice produced large quantities of IL-18 but had no measurable IL-1β in their serum. Infection of mice deficient in NLRP3, caspase-1/11, IL-1R, or the inflammasome adaptor protein ASC led to decreased levels of circulating IL-18, increased parasite replication, and death. Interestingly, mice deficient in NLRP1 also displayed increased parasite loads and acute mortality. Using mice deficient in IL-18 and IL-18R, we show that this cytokine plays an important role in limiting parasite replication to promote murine survival. Our findings reveal T. gondii as a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. IMPORTANCE Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain “sensor” proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. We report here that T. gondii is a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Using mice deficient in IL-18 and IL-18R, we show that the IL-18 cytokine plays a pivotal role by limiting parasite replication to promote murine survival. Inflammasomes are multiprotein complexes that are a major component of the innate immune system. They contain “sensor” proteins that are responsible for detecting various microbial and environmental danger signals and function by activating caspase-1, an enzyme that mediates cleavage and release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. Toxoplasma gondii is a highly successful protozoan parasite capable of infecting a wide range of host species that have variable levels of resistance. We report here that T. gondii is a novel activator of the NLRP1 and NLRP3 inflammasomes in vivo and establish a role for these sensors in host resistance to toxoplasmosis. Using mice deficient in IL-18 and IL-18R, we show that the IL-18 cytokine plays a pivotal role by limiting parasite replication to promote murine survival.


PLOS ONE | 2011

Determinants of GBP Recruitment to Toxoplasma gondii Vacuoles and the Parasitic Factors That Control It

Sebastian Virreira Winter; Wendy Niedelman; Kirk D. C. Jensen; Emily E. Rosowski; Lindsay Julien; Eric Spooner; Kacey L. Caradonna; Barbara A. Burleigh; Jeroen Saeij; Hidde L. Ploegh; Eva Maria Frickel

IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.


Cell Host & Microbe | 2015

The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole

Daniel A. Gold; Aaron D. Kaplan; Agnieszka Lis; Glenna C.L. Bett; Emily E. Rosowski; Kimberly M. Cirelli; Alexandre Bougdour; Saima M. Sidik; Josh R. Beck; Sebastian Lourido; Pascal F. Egea; Peter J. Bradley; Mohamed-Ali Hakimi; Randall L. Rasmusson; Jeroen Saeij

Toxoplasma gondii is a protozoan pathogen in the phylum Apicomplexa that resides within an intracellular parasitophorous vacuole (PV) that is selectively permeable to small molecules through unidentified mechanisms. We have identified GRA17 as a Toxoplasma-secreted protein that localizes to the parasitophorous vacuole membrane (PVM) and mediates passive transport of small molecules across the PVM. GRA17 is related to the putative Plasmodium translocon protein EXP2 and conserved across PV-residing Apicomplexa. The PVs of GRA17-deficient parasites have aberrant morphology, reduced permeability to small molecules, and structural instability. GRA17-deficient parasites proliferate slowly and are avirulent in mice. These GRA17-deficient phenotypes are rescued by complementation with Plasmodium EXP2. GRA17 functions synergistically with a related protein, GRA23. Exogenous expression of GRA17 or GRA23 alters the membrane conductance properties of Xenopus oocytes in a manner consistent with a large non-selective pore. Thus, GRA17 and GRA23 provide a molecular basis for PVM permeability and nutrient access.


Nature Communications | 2016

Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes

Hernan Lorenzi; Asis Khan; Michael S. Behnke; Sivaranjani Namasivayam; Lakshmipuram S. Swapna; Michalis Hadjithomas; Svetlana Karamycheva; Deborah F. Pinney; Brian P. Brunk; James W. Ajioka; Daniel Ajzenberg; John C. Boothroyd; Jon P. Boyle; Marie Laure Dardé; Maria A. Diaz-Miranda; J. P. Dubey; Heather M. Fritz; Solange Maria Gennari; Brian D. Gregory; Kami Kim; Jeroen Saeij; C. Su; Michael W. White; Xing Quan Zhu; Daniel K. Howe; Benjamin M. Rosenthal; Michael E. Grigg; John Parkinson; Liang Liu; Jessica C. Kissinger

Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges. To elucidate the genetic basis for these differences, we compared the genomes of 62 globally distributed T. gondii isolates to several closely related coccidian parasites. Our findings reveal that tandem amplification and diversification of secretory pathogenesis determinants is the primary feature that distinguishes the closely related genomes of these biologically diverse parasites. We further show that the unusual population structure of T. gondii is characterized by clade-specific inheritance of large conserved haploblocks that are significantly enriched in tandemly clustered secretory pathogenesis determinants. The shared inheritance of these conserved haploblocks, which show a different ancestry than the genome as a whole, may thus influence transmission, host range and pathogenicity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity

Samuel Minot; Mariane B. Melo; Fugen Li; Diana Lu; Wendy Niedelman; Stuart S. Levine; Jeroen Saeij

Toxoplasma gondii is a highly successful protozoan parasite that infects all warm-blooded animals and causes severe disease in immunocompromised and immune-naïve humans. It has an unusual global population structure: In North America and Europe, isolated strains fall predominantly into four largely clonal lineages, but in South America there is great genetic diversity and the North American clonal lineages are rarely found. Genetic variation between Toxoplasma strains determines differences in virulence, modulation of host-signaling pathways, growth, dissemination, and disease severity in mice and likely in humans. Most studies on Toxoplasma genetic variation have focused on either a few loci in many strains or low-resolution genome analysis of three clonal lineages. We use whole-genome sequencing to identify a large number of SNPs between 10 Toxoplasma strains from Europe and North and South America. These were used to identify haplotype blocks (genomic regions) shared between strains and construct a Toxoplasma haplotype map. Additional SNP analysis of RNA-sequencing data of 26 Toxoplasma strains, representing global diversity, allowed us to construct a comprehensive genealogy for Toxoplasma gondii that incorporates sexual recombination. These data show that most current isolates are recent recombinants and cannot be easily grouped into a limited number of haplogroups. A complex picture emerges in which some genomic regions have not been recently exchanged between any strains, and others recently spread from one strain to many others.


PLOS Pathogens | 2013

Transcriptional Analysis of Murine Macrophages Infected with Different Toxoplasma Strains Identifies Novel Regulation of Host Signaling Pathways

Mariane B. Melo; Quynh P. Nguyen; Cynthia Azeredo Cordeiro; Musa A. Hassan; Ninghan Yang; Renee McKell; Emily E. Rosowski; Lindsay Julien; Vincent Butty; Marie-Laure Dardé; Daniel Ajzenberg; Katherine A. Fitzgerald; Lucy H. Young; Jeroen Saeij

Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.


Infection and Immunity | 2013

Toxoplasma gondii Rhoptry 16 Kinase Promotes Host Resistance to Oral Infection and Intestinal Inflammation Only in the Context of the Dense Granule Protein GRA15

Kirk D. C. Jensen; Kenneth Hu; Ryan J. Whitmarsh; Musa A. Hassan; Lindsay Julien; Diana Lu; Lieping Chen; Christopher A. Hunter; Jeroen Saeij

ABSTRACT Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I ) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyers patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut.


International Journal for Parasitology | 2012

Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling.

Daniel C. Lim; Brian M. Cooke; Christian Doerig; Jeroen Saeij

Some apicomplexan parasites have evolved distinct protein kinase families to modulate host cell structure and function. Toxoplasma gondii rhoptry protein kinases and pseudokinases are involved in virulence and modulation of host cell signalling. The proteome of Plasmodium falciparum contains a family of putative kinases called FIKKs, some of which are exported to the host red blood cell and might play a role in erythrocyte remodelling. In this review we will discuss kinases known to be critical for host cell invasion, intracellular growth and egress, focusing on (i) calcium-dependent protein kinases and (ii) the secreted kinases that are unique to Toxoplasma (rhoptry protein kinases and pseudokinases) and Plasmodium (FIKKs).

Collaboration


Dive into the Jeroen Saeij's collaboration.

Top Co-Authors

Avatar

Kirk D. C. Jensen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Emily E. Rosowski

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lindsay Julien

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mariane B. Melo

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Musa A. Hassan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lucy H. Young

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Diana Lu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wendy Niedelman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Gold

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ana Camejo

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge