Lindsay Julien
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lindsay Julien.
Journal of Experimental Medicine | 2011
Emily E. Rosowski; Diana Lu; Lindsay Julien; Lauren Rodda; Rogier A. Gaiser; Kirk D. C. Jensen; Jeroen Saeij
The Toxoplasma gondii granule protein GRA15 activates the NF-κB pathway.
PLOS ONE | 2011
Sebastian Virreira Winter; Wendy Niedelman; Kirk D. C. Jensen; Emily E. Rosowski; Lindsay Julien; Eric Spooner; Kacey L. Caradonna; Barbara A. Burleigh; Jeroen Saeij; Hidde L. Ploegh; Eva Maria Frickel
IFN-γ is a major cytokine that mediates resistance against the intracellular parasite Toxoplasma gondii. The p65 guanylate-binding proteins (GBPs) are strongly induced by IFN-γ. We studied the behavior of murine GBP1 (mGBP1) upon infection with T. gondii in vitro and confirmed that IFN-γ-dependent re-localization of mGBP1 to the parasitophorous vacuole (PV) correlates with the virulence type of the parasite. We identified three parasitic factors, ROP16, ROP18, and GRA15 that determine strain-specific accumulation of mGBP1 on the PV. These highly polymorphic proteins are held responsible for a large part of the strain-specific differences in virulence. Therefore, our data suggest that virulence of T. gondii in animals may rely in part on recognition by GBPs. However, phagosomes or vacuoles containing Trypanosoma cruzi did not recruit mGBP1. Co-immunoprecipitation revealed mGBP2, mGBP4, and mGBP5 as binding partners of mGBP1. Indeed, mGBP2 and mGBP5 co-localize with mGBP1 in T. gondii-infected cells. T. gondii thus elicits a cell-autonomous immune response in mice with GBPs involved. Three parasitic virulence factors and unknown IFN-γ-dependent host factors regulate this complex process. Depending on the virulence of the strains involved, numerous GBPs are brought to the PV as part of a large, multimeric structure to combat T. gondii.
PLOS Pathogens | 2013
Mariane B. Melo; Quynh P. Nguyen; Cynthia Azeredo Cordeiro; Musa A. Hassan; Ninghan Yang; Renee McKell; Emily E. Rosowski; Lindsay Julien; Vincent Butty; Marie-Laure Dardé; Daniel Ajzenberg; Katherine A. Fitzgerald; Lucy H. Young; Jeroen Saeij
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Infection and Immunity | 2013
Kirk D. C. Jensen; Kenneth Hu; Ryan J. Whitmarsh; Musa A. Hassan; Lindsay Julien; Diana Lu; Lieping Chen; Christopher A. Hunter; Jeroen Saeij
ABSTRACT Toxoplasma gondii transmission between intermediate hosts is dependent on the ingestion of walled cysts formed during the chronic phase of infection. Immediately following consumption, the parasite must ensure survival of the host by preventing adverse inflammatory responses and/or by limiting its own replication. Since the Toxoplasma secreted effectors rhoptry 16 kinase (ROP16) and dense granule 15 (GRA15) activate the JAK-STAT3/6 and NF-κB signaling pathways, respectively, we explored whether a particular combination of these effectors impacted intestinal inflammation and parasite survival in vivo. Here we report that expression of the STAT-activating version of ROP16 in the type II strain (strain II+ROP16I ) promotes host resistance to oral infection only in the context of endogenous GRA15 expression. Protection was characterized by a lower intestinal parasite burden and dampened inflammation. Host resistance to the II+ROP16I strain occurred independently of STAT6 and the T cell coinhibitory receptors B7-DC and B7-H1, two receptors that are upregulated by ROP16. In addition, coexpression of ROP16 and GRA15 enhanced parasite susceptibility within tumor necrosis factor alpha/gamma interferon-stimulated macrophages in a STAT3/6-independent manner. Transcriptional profiling of infected STAT3- and STAT6-deficient macrophages and parasitized Peyers patches from mice orally challenged with strain II+ROP16I suggested that ROP16 activated STAT5 to modulate host gene expression. Consistent with this supposition, the ROP16 kinase induced the sustained phosphorylation and nuclear localization of STAT5 in Toxoplasma-infected cells. In summary, only the combined expression of both GRA15 and ROP16 promoted host resistance to acute oral infection, and Toxoplasma may possibly target the STAT5 signaling pathway to generate protective immunity in the gut.
Mbio | 2015
Kirk D. C. Jensen; Ana Camejo; Mariane B. Melo; Cynthia Azeredo Cordeiro; Lindsay Julien; Gijsbert M. Grotenbreg; Eva Maria Frickel; Hidde L. Ploegh; Lucy H. Young; Jeroen Saeij
ABSTRACT The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T. gondii likely occur with great frequency, yet little is known about the interaction between a chronically infected host and the parasite strains from these areas. A widely used model to explore secondary infection entails challenge of chronically infected or vaccinated mice with the highly virulent type I RH strain. Here, we show that although vaccinated or chronically infected C57BL/6 mice are protected against the type I RH strain, they are not protected against challenge with most strains prevalent in South America or another type I strain, GT1. Genetic and genomic analyses implicated the parasite-secreted rhoptry effectors ROP5 and ROP18, which antagonize the hosts gamma interferon-induced immunity-regulated GTPases (IRGs), as primary requirements for virulence during secondary infection. ROP5 and ROP18 promoted parasite superinfection in the brains of challenged survivors. We hypothesize that superinfection may be an important mechanism to generate T. gondii strain diversity, simply because two parasite strains would be present in a single meal consumed by the feline definitive host. Superinfection may drive the genetic diversity of Toxoplasma strains in South America, where most isolates are IRG resistant, compared to North America, where most strains are IRG susceptible and are derived from a few clonal lineages. In summary, ROP5 and ROP18 promote Toxoplasma virulence during reinfection. IMPORTANCE Toxoplasma gondii is a widespread parasite of warm-blooded animals and currently infects one-third of the human population. A long-standing assumption in the field is that prior exposure to this parasite protects the host from subsequent reexposure, due to the generation of protective immunological memory. However, this assumption is based on clinical data and mouse models that analyze infections with strains common to Europe infections with strains common to Europe and North America. In contrast, we found that the majority of strains sampled from around the world, in particular those from South America, were able to kill or reinfect the brains of hosts previously exposed to T. gondii. The T. gondii virulence factors ROP5 and ROP18, which inhibit key host effectors that mediate parasite killing, were required for these phenotypes. We speculate that these results underpin clinical observations that pregnant women previously exposed to Toxoplasma can develop congenital infection upon reexposure to South American strains. Toxoplasma gondii is a widespread parasite of warm-blooded animals and currently infects one-third of the human population. A long-standing assumption in the field is that prior exposure to this parasite protects the host from subsequent reexposure, due to the generation of protective immunological memory. However, this assumption is based on clinical data and mouse models that analyze infections with strains common to Europe and North America. In contrast, we found that the majority of strains sampled from around the world, in particular those from South America, were able to kill or reinfect the brains of hosts previously exposed to T. gondii. The T. gondii virulence factors ROP5 and ROP18, which inhibit key host effectors that mediate parasite killing, were required for these phenotypes. We speculate that these results underpin clinical observations that pregnant women previously exposed to Toxoplasma can develop congenital infection upon reexposure to South American strains.
Journal of Biological Chemistry | 2013
Daniel Lim; Daniel A. Gold; Lindsay Julien; Emily E. Rosowski; Wendy Niedelman; Michael B. Yaffe; Jeroen Saeij
Background: ROP18 is a Toxoplasma secreted Ser/Thr protein kinase important for acute virulence. Results: The crystal structure of the unphosphorylated ROP18 kinase domain was determined in complex with an ATP analog. Conclusion: The structure is inconsistent with a previously proposed model of autoinhibition and identifies an additional ligand binding site important for virulence. Significance: Structure-function studies of ROP18 will aid development of novel drugs against toxoplasmosis. At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence.
BioMed Central Ltd | 2013
Ninghan Yang; Andrew Farrell; Diana Lu; Lindsay Julien; Gabor T. Marth; Marc-Jan Gubbels; Wendy Niedelman Roberts; Mariane B. Melo; Jeroen Saeij
Ana Camejo | 2013
Kiva McFetridge; Ana Camejo; Daniel A. Gold; Diana Lu; Lindsay Julien; Ninghan Yang; Kirk D. C. Jensen; Jeroen Saeij
Rockefeller | 2011
Emily E. Rosowski; Diana Lu; Lindsay Julien; Lauren Rodda; Rogier A. Gaiser; Kirk D. C. Jensen; Jeroen Saeij