Jérôme Enjalbert
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Enjalbert.
Molecular Ecology | 2005
Jérôme Enjalbert; X. Duan; M. Leconte; Mogens S. Hovmøller; C. de Vallavieille-Pope
Puccinia striiformis f. sp. tritici (PST), a clonal basidiomycete causing yellow rust disease on wheat, has a long record of ‘overcoming’ cultivar resistance introduced by breeders. Despite the long dispersal capacity of its spores, the French population of PST presents a strong geographical structure, with the presence of a specific pathotype (array of avirulence genes) at high frequencies in the south of France. The genetic diversity underlying this differentiation was analysed by microsatellite and AFLP markers. A total of 213 French isolates belonging to 10 pathotypes collected over a 15‐year period were investigated. For each of the 12 microsatellites used, polymorphism resulted from a unique allelic variant associated to the south‐specific pathotype. This pathotype was characterized by 40 specific markers over the total of 63 polymorphims detected using 15 AFLP primer combinations. Phylogeographical analysis indicated a strictly clonal structure of the population, and a strong genomic divergence between the northern population and a south‐specific clone. Both virulence and molecular data show that the northern French population belongs to the northwestern European population, whereas the southern clone is most likely related to a Mediterranean population, the two subpopulations resulting from the ancient divergence of two clonal lineages. While the virulence complexity in the northern population may be explained by the successive introduction of corresponding resistance genes in cultivars, the maintenance of a simple virulence type in southern France, despite gene flow between the two populations, may be explained in terms of host cultivars repartition and local adaptation to specific host or climatic conditions.
PLOS Pathogens | 2014
Sajid Ali; Pierre Gladieux; M. Leconte; Angelique Gautier; Annemarie Fejer Justesen; Mogens S. Hovmøller; Jérôme Enjalbert; Claude de Vallavieille-Pope
Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen.
Fungal Genetics and Biology | 2009
Mamadou Mboup; Marc Leconte; A. Gautier; A.M. Wan; Wanquan Chen; C. de Vallavieille-Pope; Jérôme Enjalbert
Wheat yellow rust (Puccinia striiformis f.sp. tritici) (PST) has been described as a strongly clonal species in both European and Australian populations, with very limited molecular diversity but rapidly evolving virulences. Contrastingly, marked genetic diversity has been reported in Chinese PST populations. To test whether such variability could originate from oversummering areas, we assessed the diversity of virulence and molecular markers (AFLP and SSR) using 412 PST isolates from the highlands of Tianshui county in Gansu province. Very marked phenotypic and genotypic diversity (38% and 89%, respectively) was found. No genetic structure dependent on the sites sampled (Fst=0.004) or altitude distribution (Fst=0.0098) was detected, indicating important gene flow at the county scale. This study also revealed genetic recombination between molecular markers and thus strongly suggests the existence of a sexual or parasexual cycle in PST in Tianshui county. The observations of higher rates of sexual spore production in genotypes originating from Tianshui are the very first elements suggestive of the existence of a sexual cycle in this species.
PLOS Pathogens | 2007
Manuela López-Villavicencio; Odile Jonot; Amélie Coantic; Michael E. Hood; Jérôme Enjalbert; Tatiana Giraud
Population models of host–parasite interactions predict that when different parasite genotypes compete within a host for limited resources, those that exploit the host faster will be selected, leading to an increase in parasite virulence. When parasites sharing a host are related, however, kin selection should lead to more cooperative host exploitation that may involve slower rates of parasite reproduction. Despite their potential importance, studies that assess the prevalence of multiple genotype infections in natural populations remain rare, and studies quantifying the relatedness of parasites occurring together as natural multiple infections are particularly scarce. We investigated multiple infections in natural populations of the systemic fungal plant parasite Microbotryum violaceum, the anther smut of Caryophyllaceae, on its host, Silene latifolia. We found that multiple infections can be extremely frequent, with different fungal genotypes found in different stems of single plants. Multiple infections involved parasite genotypes more closely related than would be expected based upon their genetic diversity or due to spatial substructuring within the parasite populations. Together with previous sequential inoculation experiments, our results suggest that M. violaceum actively excludes divergent competitors while tolerating closely related genotypes. Such an exclusion mechanism might explain why multiple infections were less frequent in populations with the highest genetic diversity, which is at odds with intuitive expectations. Thus, these results demonstrate that genetic diversity can influence the prevalence of multiple infections in nature, which will have important consequences for their optimal levels of virulence. Measuring the occurrence of multiple infections and the relatedness among parasites within hosts in natural populations may be important for understanding the evolutionary dynamics of disease, the consequences of vaccine use, and forces driving the population genetic structure of parasites.
Agronomy for Sustainable Development | 2015
Sabrina Gaba; Françoise Lescourret; Simon Boudsocq; Jérôme Enjalbert; Philippe Hinsinger; Etienne-Pascal Journet; Marie-Laure Navas; Jacques Wery; Gaëtan Louarn; Eric Malézieux; Elise Pelzer; Marion Prudent; Harry Ozier-Lafontaine
Provisioning services, such as the production of food, feed, and fiber, have always been the main focus of agriculture. Since the 1950s, intensive cropping systems based on the cultivation of a single crop or a single cultivar, in simplified rotations or monocultures, and relying on extensive use of agrochemical inputs have been preferred to more diverse, self-sustaining cropping systems, regardless of the environmental consequences. However, there is increasing evidence that such intensive agroecosystems have led to a decline in biodiversity as well as threatening the environment and have damaged a number of ecosystem services such as the biogeochemical nutrient cycles and the regulation of climate and water quality. Consequently, the current challenge facing agriculture is to ensure the future of food production while reducing the use of inputs and limiting environmental impacts and the loss of biodiversity. Here, we review examples of multiple cropping systems that aim to use biotic interactions to reduce chemical inputs and provide more ecosystem services than just provisioning. Our main findings are the identification of underlying ecological processes and management strategies related to the provision of pairs of ecosystem services namely food production and a regulation service. We also found gaps between ecological knowledge and the constraints of agricultural practices in taking account of the interactions and possible trade-offs between multiple ecosystem services as well as socioeconomic constraints. We present guidelines for the design of multiple cropping systems combining ecological, agricultural, and genetic concepts and approaches.
Evolutionary Applications | 2012
Mamadou Mboup; Bochra A. Bahri; Marc Leconte; Claude de Vallavieille-Pope; Oliver Kaltz; Jérôme Enjalbert
Environmental heterogeneity influences coevolution and local adaptation in host–parasite systems. This also concerns applied issues, because the geographic range of parasites may depend on their capacity to adapt to abiotic conditions. We studied temperature‐specific adaptation in the wheat yellow/stripe rust pathogen, Puccinia striiformis f.sp. tritici (PST). Using laboratory experiments, PST isolates from northern and southern France were studied for their ability to germinate and to infect bread and durum wheat cultivars over a temperature gradient. Pathogen origin × temperature interactions for infectivity and germination rate suggest local adaptation to high‐ versus low‐temperature regimes in south and north. Competition experiments in southern and northern field sites showed a general competitive advantage of southern over northern isolates. This advantage was particularly pronounced in the southern ‘home’ site, consistent with a model integrating laboratory infectivity and field temperature variation. The stable PST population structure in France likely reflects adaptation to ecological and genetic factors: persistence of southern PST may be due to adaptation to the warmer Mediterranean climate; and persistence of northern PST can be explained by adaptation to commonly used cultivars, for which southern isolates are lacking the relevant virulence genes. Thus, understanding the role of temperature‐specific adaptations may help to improve forecast models or breeding programmes.
BMC Evolutionary Biology | 2009
Bochra A. Bahri; Oliver Kaltz; Marc Leconte; Claude de Vallavieille-Pope; Jérôme Enjalbert
BackgroundCosts of adaptation play an important role in host-parasite coevolution. For parasites, evolving the ability to circumvent host resistance may trade off with subsequent growth or transmission. Such costs of virulence (sensu plant pathology) limit the spread of all-infectious genotypes and thus facilitate the maintenance of genetic polymorphism in both host and parasite. We investigated costs of three virulence factors in Puccinia striiformis f.sp.tritici, a fungal pathogen of wheat (Triticum aestivum).ResultsIn pairwise competition experiments, we compared the fitness of near-isogenic genotypes that differed by a single virulence factor. Two virulence factors (vir4, vir6) imposed substantial fitness costs in the absence of the corresponding resistance genes. In contrast, the vir9 virulence factor conferred a strong competitive advantage to several isolates, and this for different host cultivars and growing seasons. In part, the experimentally derived fitness costs and benefits are consistent with frequency changes of these virulence factors in the French pathogen population.ConclusionOur results illustrate the variation in the evolutionary trajectories of virulence mutations and the potential role of compensatory mutations. Anticipation of such variable evolutionary outcomes represents a major challenge for plant breeding strategies. More generally, we believe that agro-patho-systems can provide valuable insight in (co)evolutionary processes in host-parasite systems.
Fungal Genetics and Biology | 2010
Sajid Ali; Marc Leconte; Anne-Sophie Walker; Jérôme Enjalbert; Claude de Vallavieille-Pope
Puccinia striiformis f.sp. tritici (PST), has so far been considered to reproduce asexually with until very recently no known alternate host, has a clonal population structure in the USA, Australia and Europe. However, recently, high genotypic diversity in Eastern Asia and recombinant populations in China has been reported. Variations in the ability for sexual reproduction could provide an explanation for such a geographical gradient in genotypic diversity. In order to address this hypothesis, we tested for the existence of a relationship between the ability to produce telia, sex-specific structures that are obligatory for sexual cycle, and the genetic diversity of populations measured using neutral markers, in a set of 56 isolates representative of six worldwide geographical origins. Clustering methods assigned these isolates to five genetic groups corresponding to their geographical origin, with eight inter-group hybrid individuals. Isolates representing China, Nepal and Pakistan displayed the highest telial production, while clonal populations from France and the Mediterranean region displayed very low telial production. The geographic cline in telial production corresponded to the gradient of genotypic diversity described during previous studies, showing a clear difference in telial production between clonal vs. diverse/recombinant populations. The higher mean Qst value (0.822) for telial production than the Fst value (0.317) suggested that telial production has more probably evolved through direct or indirect selection rather than genetic drift alone. The existence of high telial production in genetically diverse populations and its reduction in clonal populations is discussed with regard to evolution of sex, PST centre of origin and distribution of its alternative host.
Molecular Ecology | 2009
Bochra A. Bahri; Marc Leconte; A. Ouffroukh; C. de Vallavieille-Pope; Jérôme Enjalbert
Most plant pathogens present complex life cycles, in which the clonal reproduction may impede the delimitation of population entities. By studying the genetic structure of the wheat yellow rust caused by Puccinia striiformis f.sp. tritici (PST), we highlighted difficulties impeding population delimitation in highly clonal species. Despite the high dispersal potential of PST, southern France isolates were shown to be divergent from a northwestern European population. A 2‐year survey was performed in the Mediterranean region to assess the geographic distribution of southern isolates: 453 isolates collected in 11 countries were genotyped using 15 simple sequence repeat markers. A subsample was analysed for virulence against 23 resistance genes. The dominant strain in the western Mediterranean region was further studied with amplified fragment length polymorphism markers to test for a geographic substructure. Both ‘individual’‐ and ‘population’‐centred analyses of polymorphism markers revealed two south‐specific groups: a predominant group, with a broad variability and a wide distribution in both western and eastern Mediterranean countries, and a minor group in the western Mediterranean. The east–west gradient of genetic diversity suggested gene flow from the Middle East with subsequent founder effects and genetic divergence, and demonstrated the local survival of a western Mediterranean population. The high frequency of the resistance gene Yr8 observed in cultivars from Tunisia and Algeria may contribute to maintain the north/south structure observed in France. In addition to migration and local adaptation, the dynamics of clonal lineage diversification and replacement should be considered to define population entities in strongly clonal species.
Molecular Ecology | 2014
Sajid Ali; Pierre Gladieux; Hidayatur Rahman; Muhammad Saqib; Muhammad Fiaz; Habib Ahmad; M. Leconte; Angelique Gautier; Annemarie Fejer Justesen; Mogens S. Hovmøller; Jérôme Enjalbert; Claude de Vallavieille-Pope
Understanding the mode of temporal maintenance of plant pathogens is an important domain of microbial ecology research. Due to the inconspicuous nature of microbes, their temporal maintenance cannot be studied directly through tracking individuals and their progeny. Here, we suggest a series of population genetic analyses on molecular marker variation in temporally spaced samples to infer about the relative contribution of sexual reproduction, off‐season survival and migration to the temporal maintenance of pathogen populations. We used the proposed approach to investigate the temporal maintenance of wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (PST), in the Himalayan region of Pakistan. Multilocus microsatellite genotyping of PST isolates revealed high genotypic diversity and recombinant population structure across all locations, confirming the existence of sexual reproduction in this region. The genotypes were assigned to four genetic groups, revealing a clear differentiation between zones with and without Berberis spp., the alternate host of PST, with an additional subdivision within the Berberis zone. The lack of any differentiation between samples across two sampling years, and the very infrequent resampling of multilocus genotypes over years at a given location was consistent with limited over‐year clonal survival, and a limited genetic drift. The off‐season oversummering population in the Berberis zone, likely to be maintained locally, served as a source of migrants contributing to the temporal maintenance in the non‐Berberis zone. Our study hence demonstrated the contribution of both sexual recombination and off‐season oversummering survival to the temporal maintenance of the pathogen. These new insights into the population biology of PST highlight the general usefulness of the analytical approach proposed.