Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Nicod is active.

Publication


Featured researches published by Jérôme Nicod.


Nature | 2011

Mouse genomic variation and its effect on phenotypes and gene regulation.

Thomas M. Keane; Leo Goodstadt; Petr Danecek; Michael A. White; Kim Wong; Binnaz Yalcin; Andreas Heger; Avigail Agam; Guy Slater; Martin Goodson; N A Furlotte; Eleazar Eskin; Christoffer Nellåker; H Whitley; James Cleak; Deborah Janowitz; Polinka Hernandez-Pliego; Andrew Edwards; T G Belgard; Peter L. Oliver; Rebecca E McIntyre; Amarjit Bhomra; Jérôme Nicod; Xiangchao Gan; Wei Yuan; L van der Weyden; Charles A. Steward; Sendu Bala; Jim Stalker; Richard Mott

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.


The New England Journal of Medicine | 2008

A functional genetic link between distinct developmental language disorders.

Sonja C. Vernes; Dianne F. Newbury; Brett S. Abrahams; Laura Winchester; Jérôme Nicod; Matthias Groszer; Maricela Alarcón; Peter L. Oliver; Kay E. Davies; Daniel H. Geschwind; Anthony P. Monaco; Simon E. Fisher

BACKGROUND Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.


Molecular Psychiatry | 2007

LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia

Clyde Francks; S. Maegawa; Juha Laurén; Brett S. Abrahams; Antonio Velayos-Baeza; Sarah E. Medland; S. Colella; Matthias Groszer; E. Z. McAuley; Tara M. Caffrey; T. Timmusk; P. Pruunsild; I. Koppel; Penelope A. Lind; N. Matsumoto-Itaba; Jérôme Nicod; Lan Xiong; Ridha Joober; Wolfgang Enard; B. Krinsky; E. Nanba; Alex J. Richardson; Brien P. Riley; Nicholas G. Martin; Stephen M. Strittmatter; H.-J. Möller; Dan Rujescu; D. St Clair; Pierandrea Muglia; J. L. Roos

Left–right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P=0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P=0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.


Current Biology | 2008

Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits

Matthias Groszer; David A. Keays; Robert M. J. Deacon; Joseph P. de Bono; Shweta Prasad-Mulcare; Simone Gaub; Muriel G. Baum; Catherine A. French; Jérôme Nicod; Julie A. Coventry; Wolfgang Enard; Martin Fray; Steve D.M. Brown; Patrick M. Nolan; Svante Pääbo; Keith M. Channon; Rui M. Costa; Jens Eilers; Günter Ehret; J. Nicholas P. Rawlins; Simon E. Fisher

Summary The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene [1]. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language [2]. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning [3, 4]. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.


Nature | 2011

Sequence-based characterization of structural variation in the mouse genome.

Binnaz Yalcin; Kim Wong; Avigail Agam; Martin Goodson; Thomas M. Keane; Xiangchao Gan; Christoffer Nellåker; Leo Goodstadt; Jérôme Nicod; Amarjit Bhomra; Polinka Hernandez-Pliego; Helen Whitley; James Cleak; Rebekah Dutton; Deborah Janowitz; Richard Mott; David J. Adams; Jonathan Flint

Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.


American Journal of Human Genetics | 2007

High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders

Sonja C. Vernes; Elizabeth Spiteri; Jérôme Nicod; Matthias Groszer; Jennifer M. Taylor; Kay E. Davies; Daniel H. Geschwind; Simon E. Fisher

We previously discovered that mutations of the human FOXP2 gene cause a monogenic communication disorder, primarily characterized by difficulties in learning to make coordinated sequences of articulatory gestures that underlie speech. Affected people have deficits in expressive and receptive linguistic processing and display structural and/or functional abnormalities in cortical and subcortical brain regions. FOXP2 provides a unique window into neural processes involved in speech and language. In particular, its role as a transcription factor gene offers powerful functional genomic routes for dissecting critical neurogenetic mechanisms. Here, we employ chromatin immunoprecipitation coupled with promoter microarrays (ChIP-chip) to successfully identify genomic sites that are directly bound by FOXP2 protein in native chromatin of human neuron-like cells. We focus on a subset of downstream targets identified by this approach, showing that altered FOXP2 levels yield significant changes in expression in our cell-based models and that FOXP2 binds in a specific manner to consensus sites within the relevant promoters. Moreover, we demonstrate significant quantitative differences in target expression in embryonic brains of mutant mice, mediated by specific in vivo Foxp2-chromatin interactions. This work represents the first identification and in vivo verification of neural targets regulated by FOXP2. Our data indicate that FOXP2 has dual functionality, acting to either repress or activate gene expression at occupied promoters. The identified targets suggest roles in modulating synaptic plasticity, neurodevelopment, neurotransmission, and axon guidance and represent novel entry points into in vivo pathways that may be disturbed in speech and language disorders.


PLOS Genetics | 2011

Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

Sonja C. Vernes; Peter L. Oliver; Elizabeth Spiteri; Helen Lockstone; Rathi Puliyadi; Jennifer M. Taylor; Joses Ho; Cedric Mombereau; Ariel Brewer; Ernesto Lowy; Jérôme Nicod; Matthias Groszer; Dilair Baban; Natasha Sahgal; Jean-Baptiste Cazier; Jiannis Ragoussis; Kay E. Davies; Daniel H. Geschwind; Simon E. Fisher

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Current Biology | 2015

Molecular Signatures of Major Depression

Na Cai; Simon Chang; Yihan I Li; Qibin Li; Jingchu Hu; Jieqin Liang; Li Song; Warren W. Kretzschmar; Xiangchao Gan; Jérôme Nicod; Margarita Rivera; Hongxin Deng; B Du; K Li; Wenhu Sang; J Gao; S Gao; B Ha; Hung-Yao Ho; C Hu; Jian Hu; Zhenfei Hu; Guoping Huang; G Jiang; Tao Jiang; Wei Jin; G Li; Kan Li; Yi Hao Li; Yingrui Li

Summary Adversity, particularly in early life, can cause illness. Clues to the responsible mechanisms may lie with the discovery of molecular signatures of stress, some of which include alterations to an individual’s somatic genome. Here, using genome sequences from 11,670 women, we observed a highly significant association between a stress-related disease, major depression, and the amount of mtDNA (p = 9.00 × 10−42, odds ratio 1.33 [95% confidence interval [CI] = 1.29–1.37]) and telomere length (p = 2.84 × 10−14, odds ratio 0.85 [95% CI = 0.81–0.89]). While both telomere length and mtDNA amount were associated with adverse life events, conditional regression analyses showed the molecular changes were contingent on the depressed state. We tested this hypothesis with experiments in mice, demonstrating that stress causes both molecular changes, which are partly reversible and can be elicited by the administration of corticosterone. Together, these results demonstrate that changes in the amount of mtDNA and telomere length are consequences of stress and entering a depressed state. These findings identify increased amounts of mtDNA as a molecular marker of MD and have important implications for understanding how stress causes the disease.


Human Molecular Genetics | 2012

The DISC1 promoter: characterization and regulation by FOXP2

Rosie M. Walker; Alison E. Hill; Alice Newman; Gillian Hamilton; Helen S. Torrance; Susan Anderson; Fumiaki Ogawa; Pelagia Derizioti; Jérôme Nicod; Sonja C. Vernes; Simon E. Fisher; Pippa A. Thomson; David J. Porteous; Kathryn L. Evans

Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterization of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300 to -177 bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, while a region -982 to -301 bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by forkhead-box P2 (FOXP2), a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia. Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.


Nature Genetics | 2016

Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

Jérôme Nicod; Robert W. Davies; Na Cai; Carl Hassett; Leo Goodstadt; Cormac Cosgrove; Benjamin K Yee; Vikte Lionikaite; Rebecca E McIntyre; Carol Ann Remme; Elisabeth M. Lodder; J.S. Gregory; Tertius Hough; Russell Joynson; Hayley Phelps; Barbara Nell; Clare Rowe; Joe Wood; Alison Walling; Nasrin Bopp; Amarjit Bhomra; Polinka Hernandez-Pliego; Jacques Callebert; Richard M. Aspden; Nick P. Talbot; Peter A. Robbins; Mark Harrison; Martin Fray; Jean-Marie Launay; Yigal M. Pinto

Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.

Collaboration


Dive into the Jérôme Nicod's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amarjit Bhomra

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Richard Mott

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Flint

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binnaz Yalcin

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

David J. Adams

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

James Cleak

Wellcome Trust Centre for Human Genetics

View shared research outputs
Researchain Logo
Decentralizing Knowledge