Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry A. Nick is active.

Publication


Featured researches published by Jerry A. Nick.


Cell | 2003

By Binding SIRPα or Calreticulin/CD91, Lung Collectins Act as Dual Function Surveillance Molecules to Suppress or Enhance Inflammation

Shyra J. Gardai; Yi-Qun Xiao; Matthew Dickinson; Jerry A. Nick; Dennis R. Voelker; Kelly E. Greene; Peter M. Henson

Surfactant proteins A and D (SP-A and SP-D) are lung collectins composed of two regions, a globular head domain that binds PAMPs and a collagenous tail domain that initiates phagocytosis. We provide evidence that SP-A and SP-D act in a dual manner, to enhance or suppress inflammatory mediator production depending on binding orientation. SP-A and SP-D bind SIRPalpha through their globular heads to initiate a signaling pathway that blocks proinflammatory mediator production. In contrast, their collagenous tails stimulate proinflammatory mediator production through binding to calreticulin/CD91. Together a model is implied in which SP-A and SP-D help maintain a non/anti-inflammatory lung environment by stimulating SIRPalpha on resident cells through their globular heads. However, interaction of these heads with PAMPs on foreign organisms or damaged cells and presentation of the collagenous tails in an aggregated state to calreticulin/CD91, stimulates phagocytosis and proinflammatory responses.


Journal of Clinical Investigation | 1997

Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP.

Jerry A. Nick; Natalie J. Avdi; Scott K. Young; C Knall; P Gerwins; Gary L. Johnson; G S Worthen

Stimulation of human neutrophils with chemoattractants FMLP or platelet activating factor (PAF) results in different but overlapping functional responses. We questioned whether these differences might reflect patterns of intracellular signal transduction. Stimulation with either PAF or FMLP resulted in equivalent phosphorylation and activation of the mitogen-activated protein kinase (MAPk) homologue 38-kD murine MAP kinase homologous to HOG-1 (p38) MAPk. Neither FMLP nor PAF activated c-jun NH2-terminal MAPk (JNKs). Under identical conditions, FMLP but not PAF, resulted in significant p42/44 (ERK) MAPk activation. Both FMLP and PAF activated MAP kinase kinase-3 (MKK3), a known activator of p38 MAPk. Both MAP ERK kinase kinase-1 (MEKK1) and Raf are activated strongly by FMLP, but minimally by PAF. Pertussis toxin blocked FMLP-induced activation of the p42/44 (ERK) MAPk cascade, but not that of p38 MAPk. A specific p38 MAPk inhibitor (SK&F 86002) blocked superoxide anion production in response to FMLP and reduced adhesion and chemotaxis in response to PAF or FMLP. These results demonstrate distinct patterns of intracellular signaling for two chemoattractants and suggest that selective activation of intracellular signaling cascades may underlie different patterns of functional responses.


Journal of Clinical Investigation | 1999

Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils

Jerry A. Nick; Natalie J. Avdi; Scott K. Young; Lisa A. Lehman; Patrick P. McDonald; S. Courtney Frasch; Marcella A. Billstrom; Peter M. Henson; Gary L. Johnson; G. Scott Worthen

Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38alpha and p38delta were detected in neutrophils. LPS stimulation selectively activated p38alpha. Specific inhibitors of p38alpha MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-kappaB) activation, and synthesis of tumor necrosis factor-alpha (TNF-alpha). Inhibition of p38alpha MAPk resulted in a transient decrease in TNF-alpha mRNA accumulation but persistent loss of TNF-alpha synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38alpha MAPk, ultimately regulating adhesion, NF-kappaB activation, enhanced gene expression of TNF-alpha, and regulation of TNF-alpha synthesis.


Journal of Immunology | 2000

Role of p38 Mitogen-Activated Protein Kinase in a Murine Model of Pulmonary Inflammation

Jerry A. Nick; Scott K. Young; Kevin K. Brown; Natalie J. Avdi; Patrick G. Arndt; Benjamin T. Suratt; Michael S. Janes; Peter M. Henson; G. Scott Worthen

Early inflammatory events include cytokine release, activation, and rapid accumulation of neutrophils, with subsequent recruitment of mononuclear cells. The p38 mitogen-activated protein kinase (MAPK) intracellular signaling pathway plays a central role in regulating a wide range of inflammatory responses in many different cells. A murine model of mild LPS-induced lung inflammation was developed to investigate the role of the p38 MAPK pathway in the initiation of pulmonary inflammation. A novel p38 MAPK inhibitor, M39, was used to determine the functional consequences of p38 MAPK activation. In vitro exposure to M39 inhibited p38 MAPK activity in LPS-stimulated murine and human neutrophils and macrophages, blocked TNF-α and macrophage inflammatory protein-2 (MIP-2) release, and eliminated migration of murine neutrophils toward the chemokines MIP-2 and KC. In contrast, alveolar macrophages required a 1000-fold greater concentration of M39 to block release of TNF-α and MIP-2. Systemic inhibition of p38 MAPK resulted in significant decreases in the release of TNF-α and neutrophil accumulation in the airspaces following intratracheal administration of LPS. Recovery of MIP-2 and KC from the airspaces was not affected by inhibition of p38 MAPK, and accumulation of mononuclear cells was not significantly reduced. When KC was instilled as a proinflammatory stimulus, neutrophil accumulation was significantly decreased by p38 MAPK inhibition independent of TNF-α or LPS. Together, these results demonstrate a much greater dependence on the p38 MAPK cascade in the neutrophil when compared with other leukocytes, and suggest a means of selectively studying and potentially modulating early inflammation in the lung.


Journal of Biological Chemistry | 1996

Interleukin-8 Regulation of the Ras/Raf/Mitogen-activated Protein Kinase Pathway in Human Neutrophils

Knall C; Young S; Jerry A. Nick; Anne Mette Buhl; Worthen Gs; Gary L. Johnson

Interleukin-8 (IL-8), the prototypic member of the CXC subfamily of chemokines, induces in neutrophils chemotaxis, the respiratory burst, granule release, and increased cell adhesion. The IL-8 receptor is a seven-transmembrane spanning receptor coupled to specific heterotrimeric G proteins including G and G. IL-8 stimulation of its receptor on neutrophils activates Ras GTP loading and the mitogen-activated protein kinase (MAPK) pathway including Raf-1 and B-Raf. The properties of IL-8 stimulation of the MAPK pathway differ from those observed for chemoattractants such as C5a. Even though Ras GTP loading is similar for IL-8 and C5a, the maximal activation of Raf-1 and B-Raf is approximately 2-fold and 3-7-fold, respectively, less for IL-8 than that observed for C5a. Raf-1 activation is rapid but transient, returning to near basal levels by 10 min. B-Raf activation is slower in onset and does not return to basal levels for nearly 30 min. IL-8 activation of MAPK follows a time course suggesting an involvement of both Raf-1 and B-Raf. Surprisingly, wortmannin, at low concentrations, inhibits Raf-1, B-Raf, and MAPK activation in response to IL-8 and C5a demonstrating a role for phosphatidylinositol 3-kinase in the activation of Raf kinases in G protein-coupled receptor systems in human neutrophils. Furthermore, wortmannin inhibits IL-8 stimulated granule release and neutrophil adherence. These findings demonstrate the control of Raf kinases, the MAPK pathway and specific neutrophil functions by phosphatidylinositol 3-kinase enzymes.


Infection and Immunity | 2005

Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils

Travis S. Walker; Kerry L. Tomlin; G. Scott Worthen; Katie R. Poch; Jonathan G. Lieber; Milene T. Saavedra; Michael B. Fessler; Kenneth C. Malcolm; Michael L. Vasil; Jerry A. Nick

ABSTRACT Cystic fibrosis (CF) lung disease features persistent neutrophil accumulation to the airways from the time of infancy. CF children are frequently exposed to Pseudomonas aeruginosa, and by adulthood, 80% of CF patients are chronically infected. The formation of biofilms is a particularly important phenotypic characteristic of P. aeruginosa that allows for bacterial survival despite aggressive antibiotic therapy and an exuberant immune response. Here, we show that the presence of neutrophils enhances initial P. aeruginosa biofilm development over a period of 72 h through the formation of polymers comprised of actin and DNA. F-actin was found to be a site of attachment for P. aeruginosa. These actin and DNA polymers are present in CF sputum, and disruption of the polymers dispersed the associated P. aeruginosa cells and reduced biofilm development. These findings demonstrate a potential maladaptation of the primary innate response. When the host fails to eradicate the infection, cellular components from necrotic neutrophils can serve as a biological matrix to facilitate P. aeruginosa biofilm formation.


PLOS ONE | 2011

Neutrophil Extracellular Trap (NET)-Mediated Killing of Pseudomonas aeruginosa: Evidence of Acquired Resistance within the CF Airway, Independent of CFTR

Robert L. Young; Kenneth C. Malcolm; Jennifer E. Kret; Silvia M. Caceres; Katie R. Poch; David P. Nichols; Jennifer L. Taylor-Cousar; Milene T. Saavedra; Scott H. Randell; Michael L. Vasil; Jane L. Burns; Samuel M. Moskowitz; Jerry A. Nick

The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.


Journal of Immunology | 2002

Selective Suppression of Neutrophil Accumulation in Ongoing Pulmonary Inflammation by Systemic Inhibition of p38 Mitogen-Activated Protein Kinase

Jerry A. Nick; Scott K. Young; Patrick G. Arndt; Jonathan G. Lieber; Benjamin T. Suratt; Katie R. Poch; Natalie J. Avdi; Ken C. Malcolm; Christian Taube; Peter M. Henson; G. Scott Worthen

The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-α, macrophage-inflammatory protein (MIP)-2 (MIP-1β), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-α, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.


Thorax | 2016

US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary

R. Andres Floto; Kenneth N. Olivier; Lisa Saiman; Charles L. Daley; Jean Louis Herrmann; Jerry A. Nick; Peadar G. Noone; Diana Bilton; Paul Corris; Ronald L. Gibson; Sarah E. Hempstead; Karsten Koetz; Kathryn A. Sabadosa; Isabelle Sermet-Gaudelus; Alan Smyth; Jakko van Ingen; Richard J. Wallace; Kevin L. Winthrop; Bruce C. Marshall; Charles S. Haworth

Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms that can cause chronic pulmonary infection, particularly in individuals with pre-existing inflammatory lung disease, such as cystic fibrosis (CF). Pulmonary disease (PD) caused by NTM has emerged as a major threat to the health of individuals with CF, but remains difficult to diagnose and problematic to treat. In response to this challenge, the US Cystic Fibrosis Foundation (CFF) and the European Cystic Fibrosis Society (ECFS) convened a panel of 19 experts to develop consensus recommendations for the screening, investigation, diagnosis and management of NTM-PD in individuals with CF. PICO (population, intervention, comparison, outcome) methodology and systematic literature reviews were employed to inform draft recommendations, which were then modified to achieve consensus and subsequently circulated for public consultation within the USA and European CF communities. We have thus generated a series of pragmatic, evidence-based recommendations as an initial step in optimising management for this challenging condition.


Journal of Biological Chemistry | 2002

A Role for Protein Phosphatase-2A in p38 Mitogen-activated Protein Kinase-mediated Regulation of the c-Jun NH2-terminal Kinase Pathway in Human Neutrophils

Natalie J. Avdi; Kenneth C. Malcolm; Jerry A. Nick; G. Scott Worthen

Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-α (TNFα), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFα-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189–2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFα-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFα-induced JNK response. TNFα-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFα stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

Collaboration


Dive into the Jerry A. Nick's collaboration.

Top Co-Authors

Avatar

David P. Nichols

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Kenneth C. Malcolm

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Milene T. Saavedra

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia M. Caceres

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Michael B. Fessler

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter M. Henson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Scott K. Young

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Charles L. Daley

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge