Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott K. Young is active.

Publication


Featured researches published by Scott K. Young.


Journal of Clinical Investigation | 1997

Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP.

Jerry A. Nick; Natalie J. Avdi; Scott K. Young; C Knall; P Gerwins; Gary L. Johnson; G S Worthen

Stimulation of human neutrophils with chemoattractants FMLP or platelet activating factor (PAF) results in different but overlapping functional responses. We questioned whether these differences might reflect patterns of intracellular signal transduction. Stimulation with either PAF or FMLP resulted in equivalent phosphorylation and activation of the mitogen-activated protein kinase (MAPk) homologue 38-kD murine MAP kinase homologous to HOG-1 (p38) MAPk. Neither FMLP nor PAF activated c-jun NH2-terminal MAPk (JNKs). Under identical conditions, FMLP but not PAF, resulted in significant p42/44 (ERK) MAPk activation. Both FMLP and PAF activated MAP kinase kinase-3 (MKK3), a known activator of p38 MAPk. Both MAP ERK kinase kinase-1 (MEKK1) and Raf are activated strongly by FMLP, but minimally by PAF. Pertussis toxin blocked FMLP-induced activation of the p42/44 (ERK) MAPk cascade, but not that of p38 MAPk. A specific p38 MAPk inhibitor (SK&F 86002) blocked superoxide anion production in response to FMLP and reduced adhesion and chemotaxis in response to PAF or FMLP. These results demonstrate distinct patterns of intracellular signaling for two chemoattractants and suggest that selective activation of intracellular signaling cascades may underlie different patterns of functional responses.


Journal of Clinical Investigation | 1999

Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils

Jerry A. Nick; Natalie J. Avdi; Scott K. Young; Lisa A. Lehman; Patrick P. McDonald; S. Courtney Frasch; Marcella A. Billstrom; Peter M. Henson; Gary L. Johnson; G. Scott Worthen

Activation of leukocytes by proinflammatory stimuli selectively initiates intracellular signal transduction via sequential phosphorylation of kinases. Lipopolysaccharide (LPS) stimulation of human neutrophils is known to result in activation of p38 mitogen-activated protein kinase (MAPk); however, the upstream activator(s) of p38 MAPk is unknown, and consequences of p38 MAPk activation remain largely undefined. We investigated the MAPk kinase (MKK) that activates p38 MAPk in response to LPS, the p38 MAPk isoforms that are activated as part of this pathway, and the functional responses affected by p38 MAPk activation. Although MKK3, MKK4, and MKK6 all activated p38 MAPk in experimental models, only MKK3 was found to activate recombinant p38 MAPk in LPS-treated neutrophils. Of p38 MAPk isoforms studied, only p38alpha and p38delta were detected in neutrophils. LPS stimulation selectively activated p38alpha. Specific inhibitors of p38alpha MAPk blocked LPS-induced adhesion, nuclear factor-kappa B (NF-kappaB) activation, and synthesis of tumor necrosis factor-alpha (TNF-alpha). Inhibition of p38alpha MAPk resulted in a transient decrease in TNF-alpha mRNA accumulation but persistent loss of TNF-alpha synthesis. These findings support a pathway by which LPS stimulation of neutrophils results in activation of MKK3, which in turn activates p38alpha MAPk, ultimately regulating adhesion, NF-kappaB activation, enhanced gene expression of TNF-alpha, and regulation of TNF-alpha synthesis.


Journal of Immunology | 2000

Role of p38 Mitogen-Activated Protein Kinase in a Murine Model of Pulmonary Inflammation

Jerry A. Nick; Scott K. Young; Kevin K. Brown; Natalie J. Avdi; Patrick G. Arndt; Benjamin T. Suratt; Michael S. Janes; Peter M. Henson; G. Scott Worthen

Early inflammatory events include cytokine release, activation, and rapid accumulation of neutrophils, with subsequent recruitment of mononuclear cells. The p38 mitogen-activated protein kinase (MAPK) intracellular signaling pathway plays a central role in regulating a wide range of inflammatory responses in many different cells. A murine model of mild LPS-induced lung inflammation was developed to investigate the role of the p38 MAPK pathway in the initiation of pulmonary inflammation. A novel p38 MAPK inhibitor, M39, was used to determine the functional consequences of p38 MAPK activation. In vitro exposure to M39 inhibited p38 MAPK activity in LPS-stimulated murine and human neutrophils and macrophages, blocked TNF-α and macrophage inflammatory protein-2 (MIP-2) release, and eliminated migration of murine neutrophils toward the chemokines MIP-2 and KC. In contrast, alveolar macrophages required a 1000-fold greater concentration of M39 to block release of TNF-α and MIP-2. Systemic inhibition of p38 MAPK resulted in significant decreases in the release of TNF-α and neutrophil accumulation in the airspaces following intratracheal administration of LPS. Recovery of MIP-2 and KC from the airspaces was not affected by inhibition of p38 MAPK, and accumulation of mononuclear cells was not significantly reduced. When KC was instilled as a proinflammatory stimulus, neutrophil accumulation was significantly decreased by p38 MAPK inhibition independent of TNF-α or LPS. Together, these results demonstrate a much greater dependence on the p38 MAPK cascade in the neutrophil when compared with other leukocytes, and suggest a means of selectively studying and potentially modulating early inflammation in the lung.


Infection and Immunity | 2004

Transcriptional Profiling of Lipopolysaccharide-Induced Acute Lung Injury

Samithamby Jeyaseelan; Hong Wei Chu; Scott K. Young; G. Scott Worthen

ABSTRACT Mortality associated with acute lung injury (ALI) induced by lipopolysaccharide (LPS) remains high in humans, warranting improved treatment and prevention strategies. ALI is characterized by the expression of proinflammatory mediators and extensive neutrophil influx into the lung, followed by severe lung damage. Understanding the pathogenesis of LPS-induced ALI is a prerequisite for designing better therapeutic strategies. In the present study, we used microarrays to gain a global view of the transcriptional responses of the lung to LPS in a mouse model of ALI that mimics ALI in humans. A total of 71 inflammation-associated genes were up-regulated in LPS-treated lungs, including a chemokine, LPS-induced CXC chemokine (LIX), whose role in the induction of ALI is unknown. Most of the inflammatory genes peaked at 2 h post-LPS treatment. Real-time reverse transcription-PCR confirmed the LPS-induced up-regulation of selected genes identified by microarray analysis, including LIX. The up-regulation of LIX, tumor necrosis factor alpha, and macrophage inflammatory protein 2 was confirmed at the protein level by enzyme-linked immunosorbent assays. To determine the role of LIX in the induction of ALI, we used both exogenous LIX and a LIX blocking antibody. Exogenous LIX alone elicited a neutrophil influx in the lungs, and the anti-LIX antibody attenuated the LPS-induced neutrophil accumulation in the lungs. Taken together, the results of our study demonstrate for the first time the temporal expression of inflammatory genes during LPS-induced ALI and suggest that early therapeutic intervention is crucial to attenuate lung damage. Moreover, we identified a role for LIX in the induction of ALI, and therefore LIX may serve as a novel therapeutic target for the minimization of ALI.


Journal of Immunology | 2002

Selective Suppression of Neutrophil Accumulation in Ongoing Pulmonary Inflammation by Systemic Inhibition of p38 Mitogen-Activated Protein Kinase

Jerry A. Nick; Scott K. Young; Patrick G. Arndt; Jonathan G. Lieber; Benjamin T. Suratt; Katie R. Poch; Natalie J. Avdi; Ken C. Malcolm; Christian Taube; Peter M. Henson; G. Scott Worthen

The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-α, macrophage-inflammatory protein (MIP)-2 (MIP-1β), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-α, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling

Rachel L. Zemans; Natalie Briones; Megan Campbell; Jazalle McClendon; Scott K. Young; Tomoko Suzuki; Ivana V. Yang; Stijn De Langhe; Susan D. Reynolds; Robert J. Mason; Michael Kahn; Peter M. Henson; Sean P. Colgan; Gregory P. Downey

Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.


Infection and Immunity | 2005

Distinct Roles of Pattern Recognition Receptors CD14 and Toll-Like Receptor 4 in Acute Lung Injury

Samithamby Jeyaseelan; Hong Wei Chu; Scott K. Young; Mason W. Freeman; G. S. Worthen

ABSTRACT Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a major cause of mortality among humans. ALI is characterized by microvascular protein leakage, neutrophil influx, and expression of proinflammatory mediators, followed by severe lung damage. LPS binding to its receptors is the crucial step in the causation of these multistep events. LPS binding and signaling involves CD14 and Toll-like receptor 4 (TLR4). However, the relative contributions of CD14 and TLR4 in the induction of ALI and their therapeutic potentials are not clear in vivo. Therefore, the aim of the present study was to compare the roles of CD14 and TLR4 in LPS-induced ALI to determine which of these molecules is the more critical target for attenuating ALI in a mouse model. Our results show that CD14 and TLR4 are necessary for low-dose (300-μg/ml) LPS-induced microvascular leakage, NF-κB activation, neutrophil influx, cytokine and chemokine (KC, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-6) expression, and subsequent lung damage. On the other hand, when a 10-fold-higher dose of LPS (3 mg/ml) was used, these responses were only partially dependent on CD14 and they were totally dependent on TLR4. The CD14-independent LPS response was dependent on CD11b. A TLR4 blocking antibody abolished microvascular leakage, neutrophil accumulation, cytokine responses, and lung pathology with a low dose of LPS but only attenuated the responses with a high dose of LPS. These data are the first to demonstrate that LPS-induced CD14-depdendent and -independent (CD11b-dependent) signaling pathways in the lung are entirely dependent on TLR4 and that blocking TLR4 might be beneficial in lung diseases caused by LPS from gram-negative pathogens.


American Journal of Pathology | 2011

Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis.

Cory M. Yamashita; Lior Dolgonos; Rachel L. Zemans; Scott K. Young; Jennifer Robertson; Natalie Briones; Tomoko Suzuki; Megan Campbell; Jack Gauldie; Derek C. Radisky; David W. H. Riches; Guoying Yu; Naftali Kaminski; Christopher A. McCulloch; Gregory P. Downey

Idiopathic pulmonary fibrosis (IPF) may be triggered by epithelial injury that results in aberrant production of growth factors, cytokines, and proteinases, leading to proliferation of myofibroblasts, excess deposition of collagen, and destruction of the lung architecture. The precise mechanisms and key signaling mediators responsible for this aberrant repair process remain unclear. We assessed the importance of matrix metalloproteinase-3 (MMP-3) in the pathogenesis of IPF through i) determination of MMP-3 expression in patients with IPF, ii) in vivo experiments examining the relevance of MMP-3 in experimental models of fibrosis, and iii) in vitro experiments to elucidate possible mechanisms of action. Gene expression analysis, quantitative RT-PCR, and Western blot analysis of explanted human lungs revealed enhanced expression of MMP-3 in IPF, compared with control. Transient adenoviral vector-mediated expression of recombinant MMP-3 in rat lung resulted in accumulation of myofibroblasts and pulmonary fibrosis. Conversely, MMP-3-null mice were protected against bleomycin-induced pulmonary fibrosis. In vitro treatment of cultured lung epithelial cells with purified MMP-3 resulted in activation of the β-catenin signaling pathway, via cleavage of E-cadherin, and induction of epithelial-mesenchymal transition. These processes were inhibited in bleomycin-treated MMP-3-null mice, as assessed by cytosolic translocation of β-catenin and cyclin D1 expression. These observations support a novel role for MMP-3 in the pathogenesis of IPF, through activation of β-catenin signaling and induction of epithelial-mesenchymal transition.


Journal of Immunology | 2006

Toll/IL-1R Domain-Containing Adaptor Protein (TIRAP) Is a Critical Mediator of Antibacterial Defense in the Lung against Klebsiella pneumoniae but Not Pseudomonas aeruginosa

Samithamby Jeyaseelan; Scott K. Young; Masahiro Yamamoto; Patrick G. Arndt; Shizuo Akira; Jay K. Kolls; G. Scott Worthen

Bacterial pneumonia is a leading cause of mortality and is associated with extensive neutrophil accumulation. Major pathogens associated with this disease include nonflagellated Klebsiella pneumoniae (Kp) and flagellated Pseudomonas aeruginosa (Pa). TLRs are essential for innate immune defense. TIRAP (Toll/IL-1R domain-containing adaptor protein) is an adaptor in TLR1, TLR2, TLR4, and TLR6 signaling, whereas MyD88 is an adaptor for all TLRs. However, the importance of TIRAP in pulmonary defense against Kp or Pa has not been examined. To demonstrate the role of TIRAP, TIRAP-deficient and wild-type littermates were intratracheally inoculated with Kp or Pa. We found that TIRAP−/− mice had substantial mortality, higher bacterial burden in the lungs, and enhanced dissemination following Kp challenge. Furthermore, Kp-induced neutrophil sequestration, histopathology, and MIP-2, TNF-α, IL-6, and LIX (lipopolysaccharide-induced CXC chemokine) production were attenuated in the lungs of TIRAP−/− mice. In contrast, TIRAP is not required for Pa-induced mortality, pulmonary bacterial burden, bacterial dissemination, neutrophil accumulation, or histopathology, yet it is necessary for MIP-2, TNF-α, and IL-6 production, but not LIX production. However, both Kp- and Pa-induced neutrophil influxes are MyD88 dependent. To determine the mechanisms associated with Pa-induced neutrophil accumulation, we inoculated mice with a flagellin C mutant of Pa (PaΔfliC) or purified flagellin, a TLR5 agonist. PaΔfliC-induced neutrophil sequestration and LIX expression are dependent on TIRAP, whereas flagellin-induced neutrophil influx and LIX expression are independent of TIRAP. These novel findings illustrate a pathogen-specific role for TIRAP in pulmonary defense and suggest that TLR5 plays an essential role for Pa-induced neutrophil influx via LIX production.


Journal of Immunology | 2007

Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-β (TRIF)-Mediated Signaling Contributes to Innate Immune Responses in the Lung during Escherichia coli Pneumonia

Samithamby Jeyaseelan; Scott K. Young; Michael B. Fessler; Yuhong Liu; Kenneth C. Malcolm; Masahiro Yamamoto; Shizuo Akira; G. Scott Worthen

Bacterial pneumonia remains a serious disease and is associated with neutrophil recruitment. Innate immunity is pivotal for the elimination of bacteria, and TLRs are essential in this process. Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF) is an adaptor for TLR3 and TLR4, and is associated with the MyD88-independent cascade. However, the importance of TRIF in immune responses against pulmonary bacterial pathogens is not well understood. We investigated the involvement of TRIF in a murine model of Escherichia coli pneumonia. TRIF−/− mice infected with E. coli display attenuated neutrophil migration; NF-κB activation; and TNF-α, IL-6, and LPS-induced C-X-C chemokine production in the lungs. In addition, E. coli-induced phosphorylation of JNK, ERK, and p38 MAPK was detected in bone marrow-derived macrophages (BMMs) of TRIF+/+ mice, but attenuated in BMMs of TRIF−/− mice. Furthermore, E. coli-induced TNF-α and IL-6 production was attenuated in BMMs of TRIF−/− mice. E. coli LPS-induced late MAPK activation, and TNF-α and IL-6 production were abolished in BMMs of TRIF−/− mice. Moreover, TRIF is not required for LPS-induced neutrophil influx, and keratinocyte cell-derived chemokine, MIP-2, and LPS-induced C-X-C chemokine production in the lungs. Using TLR3−/− mice, we ruled out the role of TLR3-mediated TRIF-dependent neutrophil influx during E. coli pneumonia. A TLR4-blocking Ab inhibited E. coli-induced TNF-α and IL-6 in BMMs of both TRIF−/− and TRIF+/+ mice, suggesting that TRIF-mediated signaling involves TLR4. We also found that TRIF is critical to control E. coli burden in the lungs and E. coli dissemination. Thus, rapid activation of TRIF-dependent TLR4-mediated signaling cascade serves to augment pulmonary host defense against a Gram-negative pathogen.

Collaboration


Dive into the Scott K. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter M. Henson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Jerry A. Nick

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Gregory P. Downey

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick G. Arndt

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Rachel L. Zemans

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin T. Suratt

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Natalie J. Avdi

University of Colorado Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge