Jerzy Bohdanowicz
University of Gdańsk
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy Bohdanowicz.
Plant Cell Tissue and Organ Culture | 2005
Robert Konieczny; Jerzy Bohdanowicz; A.Z. Czaplicki; Leslaw Przywara
Androgenic plant regeneration from wheat anther callus was accompanied by the formation of a conspicuous extracellular matrix surface network (ECMSN) around the induced callus cells and young embryo-like structures. Microscopic observations at the onset of regeneration revealed the presence of two distinct types of cells on the callus surface: large, loosely attached parenchymatous cells and small tightly packed meristematic cells arranged in multicellular clusters. Parenchyma cells of the callus had smooth surface, while on the surface and between the cells of multicellular clusters numerous fine fibrils of ECMSN were observed. The structural arrangement of the ECMSN changed during culture. On the surface of globular embryo-like structures, before protoderm formation, the ECMSN was the most abundant and arranged as a compact layer of secretion with wide strands visible at the cell junctions. Further development of globular embryos was disturbed, giving rise to branched structures outlined by continuous epidermis. The development of such regenerants was accompanied by gradual degradation of the extracellular network and finally its complete disappearance. Digestion with protease did not destroy the network. Treatment of the calluses with chloroform and washing with ether–methanol led to partial destruction of the network, while digestion with pectinase removed the network completely and resulted in the collapse of surface embryo cells.
Plant Cell Reports | 2007
Robert Konieczny; Joanna Świerczyńska; Andzej Z. Czaplicki; Jerzy Bohdanowicz
The distribution of several arabinogalactan protein and pectic epitopes were studied during organogenesis in androgenic callus of wheat. In cell wall of mature and degenerating parenchyma cells, the arabinogalactan epitopes JIM4, JIM14, JIM16 or LM2 were expressed differently according to the cells location. LM2 was observed also in meristematic cells of regenerated shoot buds and leaves. Anti-pectin JIM7 labelled the wall of meristematic cells but fluorescence was strongest in outer walls of surface cells of callus and shoot buds coated by extracellular matrix surface network (ECMSN). During leaves growth the ECMSN disappeared, and JIM7 fluorescence decreased. JIM5 epitope was abundant in the cell walls lining the intercellular spaces of callus parenchyma and in tricellular junctions within regenerated buds and leaves.
Journal of Plant Research | 1995
Hong-Qi Zhang; Jerzy Bohdanowicz; Elisabeth S. Pierson; Y. Q. Li; Antonio Tiezzi; Mauro Cresti
Video microscopy and conventional or Confocal Laser Scanning Microscopy after DAPI staining and anti-α-tubulin labelling were used to study the asymmetrical division of the generative cell (GC) inGagea lutea. Pollen was cultured for up to 8 hr in a medium containing 10% poly (ethylene glycol), 3.0% to 3.8% sucrose, 0.03% casein acid hydrolysate, 15 mM 2-(N-morpholinoethane)-sulphonic acid-KOH buffer (pH 5.9) and salts. In the pollen grain, the GC had a spherical or ovoid shape and contained a fine network of intermingled microtubules. As the GC entered into the pollen tube, it assumed a cylindrical shape with a length often exceeding 250 μm. A cage of microtubules then developed around the nucleus. The presence of dense and thick microtubular bundles in front of the generative nucleus within the GC coincided with the translocation of the nucleus to the leading end of the GC. No pre-prophase band was ever detected, but a distinct prophase spindle of microtubules was formed. In some GCs a tubulin-rich dot became visible at each pole of the spindle. After nuclear envelope breakdown, the bundles of microtubules spread between the chromosomes and became oriented into parallel arrays. The spindle became shorter at metaphase, and there was no tubulin labelling at the site of the metaphase plate. At anaphase, the microtubular apparatus lost its spindle-shape and a bridge of prominent bundles of microtubules connected the two daughter nuclei. At telophase, the site of the cell plate remained unstained by the anti-α-tubulin antibody, but a distinct phragmoplast of microtubules was formed more closely to the leading nucleus, resulting in the formation of unequal sperm cells (SCs). The leading SC was up to 2.5 times smaller than the following SC and it contained a smaller or equal number of nucleoli.
American Journal of Medical Genetics Part A | 2005
Anna Kloska; Jerzy Bohdanowicz; Grażyna Konopa; Anna Tylki-Szymńska; Joanna Jakóbkiewicz-Banecka; Barbara Czartoryska; Anna Liberek; Alicja Węgrzyn; Grzegorz Węgrzyn
Mucopolysaccharidoses (MPS) are heritable, metabolic diseases caused by accumulation of mucopolysaccharides (glycosaminoglycans, GAGs) in lysosomes. This accumulation is due to a deficiency in one of several specific enzymes involved in the degradation of GAGs. MPS type I (MPS I) is caused by low or undetectable activity of α‐L‐iduronidase, an enzyme involved in removing the terminal iduronic acid residues from heparan and dermatan sulfate. Recently, an enzyme replacement therapy (ERT) for MPS I, based on administration of recombinant human α‐L‐iduronidase (laronidase, Aldurazyme), became available. The assessment of efficacy of ERT is especially important because MPS I is a highly variable and very rare disease, and the clinical trials involved relatively low number of patients. Among various significant clinical improvements during ERT, remarkable changes in hair morphology were noted. Detailed studies of hair samples from one patient, who did not have a hair cut from the beginning of ERT to the end of this study, and supported by results obtained for two other patients, revealed hair shaft structural abnormalities in MPS I hair. These hair abnormalities disappeared upon treatment with Aldurazyme. Although hair morphology is of limited clinical importance, the data suggest that changes in this parameter could be a useful, additional tool for a rapid, non‐invasive, preliminary assessment of ERT efficacy.
Protoplasma | 2010
Marzena Popielarska-Konieczna; Jerzy Bohdanowicz; Ewa Starnawska
Actinidia deliciosa endosperm-derived callus culture is stable over a long period of culture. This system was used to investigate the ultrastructure of extracellular matrix occurring in morphogenic tissue. Specimens were prepared by different biological techniques (chemical fixation, liquid nitrogen fixation, glycerol substitution, critical-point drying, lyophilization) and observed by scanning electron microscopy (SEM). Fresh and wet samples were analyzed with the use of environmental scanning electron microscopy (ESEM). Extracellular matrix was observed on the surface of cell clusters as a membranous layer or reticulated network, shrunken or wrinkled, depending on the procedure. Generally, shrunken membranous layers with a globular appearance and fibrils were noted after critical-point drying and liquid nitrogen fixation. Smoother surface layers without visible fibrils and showing porosity were typically seen by environmental scanning electron microscopy. Preservation with glycerol substitution caused wrinkled appearance of examined layer. Analysis of fresh samples yielded images closer to their natural state than did critical-point drying or fixation in liquid nitrogen, but it seems best to compare the results of different visualization methods. This is the first report of ESEM observations of plant extracellular matrix and comparison with SEM images from fixed material.
Plant Systematics and Evolution | 2012
Agnieszka K. Kowalkowska; Hanna B. Margońska; Małgorzata Kozieradzka-Kiszkurno; Jerzy Bohdanowicz
Floral spurs are regarded as features affecting pollinator behaviour. Anacamptis pyramidalis is regarded as a deceitful, non-rewarding orchid species. In the form fumeauxiana, additional spurs occur on the lateral sepals. In this study we analyse micromorphological and ultrastructural floral features and suggest the mechanism of deception in A. pyramidalis and A. pyramidalis f. fumeauxiana. In f. fumeauxiana, the adaxial surface of the lip, the lip calli, the tips of the lateral sepals, the abaxial and adaxial epidermises of the lip spur, and the lateral sepal spur have a secretory function. Numerous stomata were observed on the abaxial surfaces of spurs and sepals. The characteristic features of the ultrastructure of osmophore cells were noted: dense cytoplasm with numerous profiles of ER, mitochondria, plastids with plastoglobuli and tubular structures, a large nucleus, lipid droplets, and vesicles fusing with the plasmalemma. The similarity of the floral morphology and anatomy, the flowering period, and pollinators of A. pyramidalis, A. pyramidalis f. fumeauxiana and Gymnadeniaconopsea suggest a possible food-deceptive mechanism—imitation of nectar presence produced in the spurs of Gymnadenia.
Protoplasma | 2012
Małgorzata Kozieradzka-Kiszkurno; Bartosz J. Płachno; Jerzy Bohdanowicz
The development of the suspensor in two species — Sempervivum arachnoideum and Jovibarba sobolifera — was investigated using cytochemical methods, light and electron microscopy. Cytological processes of differentiation in the embryo-suspensor were compared with the development of embryo-proper. The mature differentiated suspensor consists of a large basal cell and three to four chalazal cells. The basal cell produces haustorial branched invading ovular tissues. The walls of the haustorium and the micropylar part of the basal cell form the wall ingrowths typical for a transfer cells. The ingrowths also partially cover the lateral wall and the chalazal wall separating the basal cell from the other embryo cells. The dense cytoplasm filling the basal cell is rich in: numerous polysomes lying free or covering rough endoplasmic reticulum (RER), active dictyosomes, microtubules, bundles of microfilaments, microbodies, mitochondria, plastids and lipid droplets. Cytochemical tests (including proteins, insoluble polysaccharides and lipids are distributed in the suspensor during different stages of embryo development) showed the presence of high amounts of macromolecules in the suspensor cells, particularly during the globular and heart-shaped phases of embryo development. The protein bodies and lipid droplets are the main storage products in the cells of the embryo-proper. The results of Auramine 0 indicate that a cuticular material is present only on the surface walls of the embryo-proper, but is absent from the suspensor cell wall. The ultrastructural features and cytochemical tests indicate that in the two species — S. arachnoideum and J. sobolifera — the embryo-suspensor is mainly involved in the absorption and transport of metabolites from the ovular tissues to the developing embryo-proper.
Protoplasma | 2011
Małgorzata Kozieradzka-Kiszkurno; Joanna Świerczyńska; Jerzy Bohdanowicz
The changes in the formation of both the actin and the microtubular cytoskeleton during the differentiation of the embryo-suspensor in Sedum acre were studied in comparison with the development of the embryo-proper. The presence and distribution of the cytoskeletal elements were examined ultrastructurally and with the light microscope using immunolabelling and rhodamine-phalloidin staining. At the globular stage of embryo development extensive array of actin filaments is present in the cytoplasm of basal cell, the microfilament bundles generally run parallel to the long axis of basal cell and pass in close to the nucleus. Microtubules form irregular bundles in the cytoplasm of the basal cell. A strongly fluorescent densely packed microtubules are present in the cytoplasmic layer adjacent to the wall separating the basal cell from the first layer of the chalazal suspensor cells. At the heart-stage of embryo development, in the basal cell, extremely dense arrays of actin materials are located near the micropylar and chalazal end of the cell. At this stage of basal cell formation, numerous actin filaments congregate around the nucleus. In the fully differentiated basal cell and micropylar haustorium, the tubulin cytoskeleton forms a dense prominent network composed of numerous cross-linked filaments. In the distal region of the basal cell, a distinct microtubular cytoskeleton with numerous microtubules is observed in the cytoplasmic layer adjacent to the wall, separating the basal cell from the first layer of the chalazal suspensor cells. The role of cytoskeleton during the development of the suspensor in S. acre is discussed.
Protoplasma | 2010
Małgorzata Kozieradzka-Kiszkurno; Jerzy Bohdanowicz
Plasmodesmata ensure the continuity of cytoplasm between plant cells and play an important part in the intercellular communication and signal transduction. During the development of the suspensor of both Sedum acre L. and Sedum hispanicum L., changes in the ultrastructure of plasmodesmata and adjoining cytoplasm are observed. Numerous simple plasmodesmata are present in the inner wall of the two-celled embryo separating the basal cell from the apical cell. From the early-globular to the torpedo stage of embryo development, the part of the wall separating the basal cell from the first layer of the chalazal suspensor cells is perforated by unusual, compound plasmodesmata. The role and the sort of transport through these plasmodesmata are discussed.
Veterinary Parasitology | 2009
Gerard Kanarek; Jerzy Bohdanowicz
Stomachs of the Great Cormorant (Phalacrocorax carbo) from north-eastern Poland were found to contain adult nematode Contracaecum rudolphii [Hartwich, G., 1964. Revision der Vogelparasitischen Nematoden Mitteleuropas II. Die Gattung Contracaecum Railliet & Henry, 1912. Mitt. Zool. Mus. Berlin 40, 15-53.] sensu lato and nematode larvae which, based on their morphology, were identified as the third (L3) and fourth (L4) stage larvae of Contracaecum sp. Morphology and biometry of the L3 isolated from the Great Cormorant were very similar to those of the L3 of C. rudolphii described by Bartlett [Bartlett, C.M., 1996. Morphogenesis of Contracaecum rudolphii (Nematoda: Ascaridoidea), a parasite of fish-eating birds, in its copepod precursor and fish intermediate hosts. Parasite 4, 367-376.]. In our opinion, L3 and L4 to be larval stages of C. rudolphii. The paper contains detailed descriptions of the L3 and L4 stages of C. rudolphii; the L4 morphology is described in detail for the first time ever. The descriptions are supplemented by drawings and SEM images. Morphology and biometry of larvae were compared with the literature data and discussed.