Maria Pilarska
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Pilarska.
Plant Cell Tissue and Organ Culture | 2013
Maria Pilarska; J. Paul Knox; Robert Konieczny
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation.
Plant Systematics and Evolution | 2012
Elżbieta Kuta; Jerzy Bohdanowicz; Aneta Słomka; Maria Pilarska; Hermann Bothe
Two zinc violets, the yellow form of the Aachen–Liège area and the blue morph of Blankenrode in western Westphalia, have very restricted occurrence on heavy metal waste heaps. Their taxonomic affinities have not been finally resolved. The flower micromorphological analysis presented here indicates that both zinc violets are closely related to the alpine Viola lutea, in line with our earlier published molecular data, but not with the conclusions of other authors. The zinc violets are classed at the rank of subspecies as V. lutea: ssp. calaminaria for the yellow zinc violet and ssp. westfalica for its blue counterpart. Although the violets examined (V. lutea, V. lutea ssp. calaminaria, V. lutea ssp. westfalica) are closely related, there is no evidence that V. lutea ssp. westfalica is a descendent of V. tricolor. Here we provide the most detailed information on generative organ structure in the four violets studied.
Protoplasma | 2016
Maria Pilarska; Przemysław Malec; Jan Salaj; Filip Bartnicki; Robert Konieczny
The aim of this study was to identify and examine the expression pattern of the ortholog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene from Trifolium nigrescens (TnSERK) in embryogenic and non-regenerative cultures of immature cotyledonary-stage zygotic embryos (CsZEs). In the presence of 1-naphthaleneacetic acid and N6-[2-isopentenyl]-adenine, the CsZE regenerated embryoids directly and in a lengthy culture produced callus which was embryogenic or remained non-regenerative. As revealed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the TnSERK was expressed in both embryogenic and non-regenerative cultures, but the expression level was significantly higher in embryogenic ones. An in situ RNA hybridization assay revealed that the expression of TnSERK preceded the induction of cell division in explants, and then, it was maintained exclusively in actively dividing cells from which embryoids, embryo-like structures (ELSs), callus or tracheary elements were produced. However, the cells involved in different morphogenic events differed in intensity of hybridization signal which was the highest in embryogenic cells. The TnSERK was up-regulated during the development of embryoids, but in cotyledonary embryos, it was preferentially expressed in the regions of the apical meristems. The occurrence of morphological and anatomical abnormalities in embryoid development was preceded by a decline in TnSERK expression, and this coincided with the parenchymatization of the ground tissue in developing ELSs. TnSERK was also down-regulated during the maturation of parenchyma and xylem elements in CsZE and callus. Altogether, these data suggest the involvement of TnSERK in the induction of various developmental programs related to differentiation/transdifferentiation and totipotent state of cell(s).
Frontiers in Plant Science | 2016
Maria Pilarska; Monika Wiciarz; Ivan Jajić; Małgorzata Kozieradzka-Kiszkurno; Petre I. Dobrev; Radomira Vankova; Ewa Niewiadomska
Isolated thylakoids from halophytic Eutrema salsugineum (Thellungiella salsuginea) produces more H2O2 in comparison to glycophytic Arabidopsis thaliana. The first objective of this study was to verify whether this feature is relevant also to the intact chloroplasts and leaves. Enhanced H2O2 levels in chloroplasts and leaves of E. salsugineum were positively verified with several methods (electron microscopy, staining with Amplex Red and with diaminobenzidine). This effect was associated with a decreased ratio of O2•–/H2O2 in E. salsugineum in comparison to A. thaliana as detected by electron paramagnetic resonance method. As a next step, we tested how this specific ROS signature of halophytic species affects the antioxidant status and down-stream components of ROS signaling. Comparison of enzymatic antioxidants revealed a decreased activity of ascorbate peroxidase (APX), enhanced activity of glutathione peroxidase, and the presence of thylakoid-bound forms of iron superoxide dismutase (FeSOD) and APX in E. salsugineum. These cues were, however, independent from application of salt stress. The typical H2O2-dependent cellular responses, namely the levels of glucosinolates and stress-related hormones were determined. The total glucosinolate content in E. salsugineum water-treated leaves was higher than in A. thaliana and increased after salinity treatment. Treatment with salinity up-regulated all of tested stress hormones, their precursors and catabolites [abscisic acid (ABA), dihydrophaseic acid, phaseic acid, 1-aminocyclopropane-1-carboxylic acid, salicylic acid, jasmonic acid, cis-(+)-12-oxo-phytodienoic acid and jasmonoyl-L-isoleucine] in A. thaliana, whereas in E. salsugineum only a stimulation in ethylene synthesis and ABA catabolism was noted. Obtained results suggest that constitutively enhanced H2O2 generation in chloroplasts of E. salsugineum might be a crucial component of stress-prepardeness of this halophytic species. It shapes a very efficient antioxidant protection (in which glucosinolates might play a specific role) and a fine tuning of hormonal signaling to suppress the cell death program directed by jasmonate pathway.
Journal of Experimental Botany | 2016
Justyna Łabuz; Sławomir Samardakiewicz; Paweł Hermanowicz; Elzbieta Wyroba; Maria Pilarska; Halina Gabryś
Highlight Localization of loosely bound calcium in Arabidopsis mesophyll changes under strong blue light in the wild type, but not in phot2 and phot1phot2 mutants. This indicates that phot2 is involved in calcium homeostasis.
Journal of Plant Physiology | 2018
Ewa Niewiadomska; Kathleen Brückner; Maria Mulisch; Jerzy Kruk; Aleksandra Orzechowska; Maria Pilarska; Rafal Luchowski; Wiesław I. Gruszecki; Karin Krupinska
As tocopherols are expected to protect PSII against toxic singlet oxygen it is surprising that the null tocopherol mutant vte1 has been reported to show only a weak enhancement of photosystem II photoinhibition under high irradiance. Based on the view that singlet oxygen is formed also in unstressed conditions, such as low light (LL), we hypothesized that some defense strategies are activated in vte1 in these light conditions. In support for that we noted several symptoms of stress at PSII in the mutant under LL, by means of parameters of fast and slow kinetics of chlorophyll fluorescence and of changes in the relative contribution of PSII antenna in comparison to those of PSI. This was associated with a lower extent of phosphorylation of PSII core proteins (D1 and CP43). PSII RCs do not totally recover from stress in vte1 even after the nocturnal phase. As a clear compensation for the impeded performance of PSII in the vte1 we noted an increased quantum efficiency of PSI. A pronounced changes between WT and the vte1 mutant were also related to conformation of LHCII at the beginning of photoperiod, suggesting the absence of LHCII trimers in the mutant. The thylakoids thickness was similar in WT and vte1 under LL, but a pronounced unstacking of thylakoids was evoked by HL only in vte1. In conclusion, we postulate that action of 1O2 on PSII in vte1 leads to some permanent damage at PSII core and at LHCII already under LL.
Plant Physiology and Biochemistry | 2017
Maria Pilarska; Ernest Skowron; Rafał Pietraś; Karin Krupinska; Ewa Niewiadomska
The involvement of reactive oxygen species (ROS) in the progress of leaf senescence has long been suggested, but there are contrasting results to either support or deny the positive correlation between the senescence progression and the level of ROS-triggered lipid peroxidation. The inconsistency among reported results can partly be attributed to the poor specificity of the most commonly employed colorimetric assay and changes in the ratio of dry weight/fresh weight during leaf senescence. In this study we determined the end-product of lipid peroxidation malondialdehyde (MDA) by GS-MS, and analyzed its changes during senescence of tobacco leaves as calculated on dry weight basis. In leaves of the wild type plants the MDA level did not change during senescence. In the mutant PSAG12::IPT leaves stayed green because of the elevated synthesis of cytokinins, but the MDA level was much higher in comparison to WT when leaves of the same age were compared. These results clearly show that lipid peroxidation is not associated with leaf senescence, at least in tobacco. This GS-MS method can be used to judge the involvement of lipid peroxidation in senescence in other species.
Plant Cell Tissue and Organ Culture | 2012
Robert Konieczny; Elwira Sliwinska; Maria Pilarska; Monika Tuleja
Plant Cell Tissue and Organ Culture | 2010
Robert Konieczny; Maria Pilarska; Monika Tuleja; Terézia Salaj; Tomasz Ilnicki
Journal of Plant Growth Regulation | 2009
Robert Konieczny; Jan Kępczyński; Maria Pilarska; Danuta Cembrowska; Diedrik Menzel; Jozef Šamaj