Jerzy Pogonowski
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy Pogonowski.
Journal of Logic and Computation | 2010
Andrzej Wiśniewski; Jerzy Pogonowski
We show that some natural, reasonable assumptions concerning interrogatives and answers yield the existence of recursive sets of sentences which are not sets of direct answers to any interrogative. Our results strengthen Harrah’s incompleteness theorem.We also draw some epistemic consequences from our results.
Logica Universalis | 2010
Andrzej Wiśniewski; Jerzy Pogonowski
We consider structures of the form (Φ, Ψ, R), where Φ and Ψ are non-empty sets and
Archive | 2018
Roman Murawski; Jerzy Pogonowski
Lingua Posnaniensis | 2011
Jerzy Pogonowski
{R\subseteq \Psi\times \Phi}
Argumentation | 2014
Katarzyna Budzynska; Michał Araszkiewicz; Barbara Bogołȩbska; Piotr Cap; Tadeusz Ciecierski; Kamila Debowska-Kozlowska; Barbara Dunin-Kȩplicz; Marcin Konrad Dziubiński; Michał Federowicz; Anna Gomolińska; Andrzej Grabowski; Teresa Hołówka; Łukasz Jochemczyk; Magdalena Kacprzak; Paweł Kawalec; Maciej Kielar; Andrzej Kisielewicz; Marcin Koszowy; Robert Kublikowski; Piotr Kulicki; Anna Kuzio; Piotr Lewiński; Jakub Z. Lichański; Jacek Malinowski; Witold Marciszewski; Edward Nieznański; Janina Pietrzak; Jerzy Pogonowski; Tomasz Puczyłowski; Jolanta Rytel
Zagadnienia Naukoznawstwa | 2016
Krzysztof Szymanek; Katarzyna Budzynska; Janusz Czelakowski; Arkadiusz Drukier; Andrzej Grabowski; Magdalena Kacprzak; Barbara Konat; Marcin Koszowy; Piotr Lewiński; Paweł Łupkowski; Marek Magdziak; Michał Paździora; Jerzy Pogonowski; Magdalena Ryszka-Kurczab; Jolanta Rytel; Marcin Selinger; Bartłomiej Skowron; Irena Trzcieniecka-Schneider; Mariusz Urbański; Krzysztof A. Wieczorek; Natalia Żyluk
is a relation whose domain is Ψ. In particular, by using a special kind of a diagonal argument, we prove that if Φ is a denumerable recursive set, Ψ is a denumerable r.e. set, and R is an r.e. relation, then there exists an infinite family of infinite recursive subsets of Φ which are not R-images of elements of Ψ. The proof is a very elementary one, without any reference even to e.g. the
Filozofia Nauki | 2012
Jerzy Pogonowski
Investigationes Linguisticae | 2011
Jerzy Pogonowski
{S_{n}^{m}}
Investigationes Linguisticae | 2011
Jerzy Pogonowski
Archive | 2010
Jerzy Pogonowski
-theorem. Some consequences of the main result are also discussed.