Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesper Nylandsted.
Journal of Experimental Medicine | 2004
Jesper Nylandsted; Mads Gyrd-Hansen; Agnieszka Danielewicz; Nicole Fehrenbacher; Ulrik Lademann; Maria Høyer-Hansen; Ekkehard Weber; Gabriele Multhoff; Mikkel Rohde; Marja Jäättelä
Heat shock protein 70 (Hsp70) is a potent survival protein whose depletion triggers massive caspase-independent tumor cell death. Here, we show that Hsp70 exerts its prosurvival function by inhibiting lysosomal membrane permeabilization. The cell death induced by Hsp70 depletion was preceded by the release of lysosomal enzymes into the cytosol and inhibited by pharmacological inhibitors of lysosomal cysteine proteases. Accordingly, the Hsp70-mediated protection against various death stimuli in Hsp70-expressing human tumor cells as well as in immortalized Hsp70 transgenic murine fibroblasts occurred at the level of the lysosomal permeabilization. On the contrary, Hsp70 failed to inhibit the cytochrome c–induced, apoptosome-dependent caspase activation in vitro and Fas ligand–induced, caspase-dependent apoptosis in immortalized fibroblasts. Immunoelectron microscopy revealed that endosomal and lysosomal membranes of tumor cells contained Hsp70. Permeabilization of purified endo/lysosomes by digitonin failed to release Hsp70, suggesting that it is physically associated with the membranes. Finally, Hsp70 positive lysosomes displayed increased size and resistance against chemical and physical membrane destabilization. These data identify Hsp70 as the first survival protein that functions by inhibiting the death-associated permeabilization of lysosomes.
Nature | 2010
Thomas Kirkegaard; Anke G. Roth; Nikolaj H.T. Petersen; Ajay K. Mahalka; Ole Dines Olsen; Irina Moilanen; Alicja Zylicz; Jens Knudsen; Konrad Sandhoff; Christoph Arenz; Paavo K.J. Kinnunen; Jesper Nylandsted; Marja Jäättelä
Heat shock protein 70 (Hsp70) is an evolutionarily highly conserved molecular chaperone that promotes the survival of stressed cells by inhibiting lysosomal membrane permeabilization, a hallmark of stress-induced cell death. Clues to its molecular mechanism of action may lay in the recently reported stress- and cancer-associated translocation of a small portion of Hsp70 to the lysosomal compartment. Here we show that Hsp70 stabilizes lysosomes by binding to an endolysosomal anionic phospholipid bis(monoacylglycero)phosphate (BMP), an essential co-factor for lysosomal sphingomyelin metabolism. In acidic environments Hsp70 binds with high affinity and specificity to BMP, thereby facilitating the BMP binding and activity of acid sphingomyelinase (ASM). The inhibition of the Hsp70–BMP interaction by BMP antibodies or a point mutation in Hsp70 (Trp90Phe), as well as the pharmacological and genetic inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann–Pick disease (NPD) A and B—severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM—is also associated with a marked decrease in lysosomal stability, and this phenotype can be effectively corrected by treatment with recombinant Hsp70. Taken together, these data open exciting possibilities for the development of new treatments for lysosomal storage disorders and cancer with compounds that enter the lysosomal lumen by the endocytic delivery pathway.
Annals of the New York Academy of Sciences | 2006
Jesper Nylandsted; Karsten Brand; Marja Jäättelä
Abstract: The major stress‐inducible heat shock protein, Hsp70, is a chaperone protein abundantly and preferentially expressed in human tumors and tumor cell lines. Owing to the ability of Hsp70 to protect cells from a wide range of apoptotic and necrotic stimuli, it has been assumed that Hsp70 may confer survival advantage to tumor cells. To investigate this hypothesis in human tumor cell lines, we generated an adenovirus expressing antisense Hsp70 (Ad.asHsp70). The effective and specific depletion of Hsp70 by Ad.asHsp70 resulted in massive cell death of all tumorigenic cell lines tested (carcinomas of breast, colon, prostate and liver as well as glioblastoma). Inspite of an effective depletion of Hsp70, Ad.asHsp70 had no effect on the survival or growth of fetal fibroblasts or non‐tumorigenic epithelial cells of breast or prostate. Anti‐apoptotic proteins Bcl‐2, Bcl‐XLand CrmA as well as peptide‐inhibitors of caspases, DEVD‐CHO and zVAD‐FMK, failed to rescue tumor cells from Ad.asHsp70‐induced cell death. These results indicate that the high expression of Hsp70 is a prerequisite for the survival of human cancer cells of various origins and reveal Hsp70 as the only protein described so far whose expression is specifically needed for the survival of tumorigenic cells.
Cancer Cell | 2013
Nikolaj H.T. Petersen; Ole Dines Olsen; Line Groth-Pedersen; Anne Marie Ellegaard; Mesut Bilgin; Susanne Redmer; Marie Stampe Ostenfeld; Danielle B. Ulanet; Tobias H Dovmark; Andreas Vejen Lønborg; Signe Diness Vindeløv; Douglas Hanahan; Christoph Arenz; Christer S. Ejsing; Thomas Kirkegaard; Mikkel Rohde; Jesper Nylandsted; Marja Jäättelä
Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert multidrug resistance. Their cancer selectivity is associated with transformation-associated reduction in ASM expression and subsequent failure to maintain sphingomyelin hydrolysis during drug exposure. Taken together, these data identify ASM as an attractive target for cancer therapy.
Cancer Research | 2007
Line Groth-Pedersen; Marie Stampe Ostenfeld; Maria Høyer-Hansen; Jesper Nylandsted; Marja Jäättelä
Vincristine is a microtubule-destabilizing antimitotic drug that has been used in cancer therapy for over 40 years. However, the knowledge on vincristine-induced cell death pathways is still sparse. Here, we show that vincristine induces dramatic changes in the lysosomal compartment and sensitizes cells to lysosomal membrane permeabilization. In HeLa cervix carcinoma cells, vincristine induced mitotic arrest and massive cell death associated with an early increase in the lysosomal volume and lysosomal leakage followed by the activation of the intrinsic apoptosis program. In contrast, the majority of vincristine-treated MCF-7 breast carcinoma cells resisted apoptosis. Instead, they adapted to the spindle assembly checkpoint and escaped the mitotic arrest as micronucleated and senescent cells with an increase in the volume and the activity of their lysosomal compartment. Consistent with its substantial effects on the lysosomes, vincristine greatly sensitized cultured cancer cells as well as orthotopic breast cancer xenografts in mice to the cytotoxicity induced by siramesine, a sigma-2 receptor ligand that kills cancer cells by destabilizing their lysosomes. Importantly, the combination of nontoxic concentrations of vincristine and siramesine resulted in massive cell death even in MCF-7 cells that were capable of escaping vincristine-induced spindle assembly checkpoint and cell death. Similar synergism was observed when siramesine was combined with a semisynthetic vincristine analogue, vinorelbine, or with microtubule-stabilizing paclitaxel. These data strongly suggest that combination therapies consisting of microtubule-disturbing and lysosome-destabilizing drugs may prove useful in the treatment of otherwise therapy-resistant human cancers.
Brain Research | 2003
Oskar Hansson; Jesper Nylandsted; Roger F. Castilho; Marcel Leist; Marja Jäättelä; Patrik Brundin
Huntingtons disease (HD) is a neurodegenerative disorder caused by expansion of a polyglutamine tract in a protein called huntingtin. The inducible form of heat shock protein 70 (Hsp70) has been shown to reduce polyglutamine-induced toxicity. To investigate if overexpression of Hsp70 can affect disease progression in a mouse model of HD, we crossed R6/2 mice, expressing exon 1 of the HD gene with an expanded CAG repeat, with mice overexpressing Hsp70 (both types of transgenic mice were of the CBAxC57BL/6 strain). The resulting R6/2-Hsp70 transgenics exhibited 5- to 15-fold increases in Hsp70 expression in neocortical, hippocampal and basal ganglia regions. This correlated with a delayed loss of body weight compared to R6/2 mice. However, the number or size of nuclear inclusions, the loss of brain weight, reduction of striatal volume, reduction in size of striatal projection neurons, downregulation of DARPP-32, development of paw clasping phenotype and early death of the mice were not affected by Hsp70 overexpression. Interestingly, the polyglutamine protein affected the potential rescuing agent, because in older R6/2-Hsp70 mice a large proportion of the Hsp70 protein was sequestrated in nuclear inclusions.
Autophagy | 2008
Marie Stampe Ostenfeld; Maria Høyer-Hansen; Lone Bastholm; Nicole Fehrenbacher; Ole Dines Olsen; Line Groth-Pedersen; Pietri Puustinen; Thomas Kirkegaard-Sørensen; Jesper Nylandsted; Thomas Farkas; Marja Jäättelä
A σ-2 receptor ligand siramesine induces lysosomal leakage and cathepsin-dependent death of cancer cells in vitro and displays potent anti-cancer activity in vivo. The mechanism by which siramesine destabilizes lysosomes is, however, unknown. Here, we show that siramesine induces a rapid rise in the lysosomal pH that is followed by lysosomal leakage and dysfunction. The rapid accumulation of siramesine into cancer cell lysosomes, its ability to destabilize isolated lysosomes, and its chemical structure as an amphiphilic amine indicate that it is a lysosomotropic detergent. Notably, siramesine triggers also a substantial Atg6- and Atg7-dependent accumulation of autophagosomes that is associated with a rapid and sustained inhibition of mammalian target of rapamycin complex 1 (mTORC1; an inhibitor of autophagy). Siramesine fails, however, to increase the degradation rate of long-lived proteins. Thus, the massive accumulation of autophagosomes is likely to be due to a combined effect of activation of autophagy signaling and decreased autophagosome turnover. Importantly, pharmacological and RNA interference-based inhibition of autophagosome formation further sensitizes cancer cells to siramesine-induced cytotoxicity. These data identify siramesine as a lysosomotropic detergent that triggers cell death via a direct destabilization of lysosomes and cytoprotection by inducing the accumulation of autophagosomes. Threrefore, the combination of siramesine with inhibitors of autophagosome formation appears as a promising approach for future cancer therapy.
Molecular and Cellular Biology | 2006
Mads Gyrd-Hansen; Thomas Farkas; Nicole Fehrenbacher; Lone Bastholm; Maria Høyer-Hansen; Folmer Elling; David Wallach; Richard A. Flavell; Guido Kroemer; Jesper Nylandsted; Marja Jäättelä
ABSTRACT The apoptosome, a heptameric complex of Apaf-1, cytochrome c, and caspase-9, has been considered indispensable for the activation of caspase-9 during apoptosis. By using a large panel of genetically modified murine embryonic fibroblasts, we show here that, in response to tumor necrosis factor (TNF), caspase-8 cleaves and activates caspase-9 in an apoptosome-independent manner. Interestingly, caspase-8-cleaved caspase-9 induced lysosomal membrane permeabilization but failed to activate the effector caspases whereas apoptosome-dependent activation of caspase-9 could trigger both events. Consistent with the ability of TNF to activate the intrinsic apoptosis pathway and the caspase-9-dependent lysosomal cell death pathway in parallel, their individual inhibition conferred only a modest delay in TNF-induced cell death whereas simultaneous inhibition of both pathways was required to achieve protection comparable to that observed in caspase-9-deficient cells. Taken together, the findings indicate that caspase-9 plays a dual role in cell death signaling, as an activator of effector caspases and lysosomal membrane permeabilization.
Cell Cycle | 2004
Mads Gyrd-Hansen; Jesper Nylandsted; Marja Jäättelä
The major heat-inducible Hsp70 is a potent survival protein that confers cytoprotection against numerous death-inducing stimuli and increases the tumorigenicity of rodent cells. The depletion of Hsp70 by adenovirus-mediated transfer of antisense cDNA induces caspase-independent death of tumorigenic cells while non-tumorigenic cells are unaffected, suggesting that Hsp70 has cancer-specific function(s). We have recently demonstrated that the depletion of Hsp70 in cancer cells results in a cysteine cathepsin-dependent death, which is preceded by lysosomal destabilization and release of lysosomal constituents to the cytosol. In line with this, Hsp70 localizes to the membranes of lysosomes in human colon carcinoma cells and immortalized murine embryonic fibroblasts (MEFs) and prevents lysosomal membrane permeabilization and cell death induced by tumor necrosis factor (TNF), etoposide and H2O2. These findings identify Hsp70 as the first survival protein that functions by stabilizing the lysosomal membrane.
Cancer Research | 2004
Randi G. Syljuåsen; Claus Storgaard Sørensen; Jesper Nylandsted; Claudia Lukas; Jiri Lukas; Jiri Bartek
The human checkpoint kinase Chk1 has been suggested as a target for cancer treatment. Here, we show that a new inhibitor of Chk1 kinase, CEP-3891, efficiently abrogates both the ionizing radiation (IR)-induced S and G2 checkpoints. When the checkpoints were abrogated by CEP-3891, the majority (64%) of cells showed fragmented nuclei at 24 hours after IR (6 Gy). The formation of nuclear fragmentation in IR-treated human cancer cells was directly visualized by time-lapse video microscopy of U2-OS cells expressing a green fluorescent protein-tagged histone H2B protein. Nuclear fragmentation occurred as a result of defective chromosome segregation when irradiated cells entered their first mitosis, either prematurely without S and G2 checkpoint arrest in the presence of CEP-3891 or after a prolonged S and G2 checkpoint arrest in the absence of CEP-3891. The nuclear fragmentation was clearly distinguishable from apoptosis because caspase activity and nuclear condensation were not induced. Finally, CEP-3891 not only accelerated IR-induced nuclear fragmentation, it also increased the overall cell killing after IR as measured in clonogenic survival assays. These results demonstrate that transient Chk1 inhibition by CEP-3891 allows premature mitotic entry of irradiated cells, thereby leading to accelerated onset of mitotic nuclear fragmentation and increased cell death.