Jessal J. Patel
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessal J. Patel.
Bone | 2012
Isabel R. Orriss; Michelle L. Key; Andrea Brandao-Burch; Jessal J. Patel; Geoffrey Burnstock; Timothy R. Arnett
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor. We report here that primary rat osteoblasts express additional, functional P2 receptors (P2X1, P2X3, P2X4, P2X6, P2Y(12), P2Y(13) and P2Y(14)). Receptor expression changed with cellular differentiation: e.g., P2X4 receptor mRNA levels were 5-fold higher in mature, bone-forming osteoblasts, relative to immature, proliferating cells. The rank order of expression of P2 receptor mRNAs in mature osteoblasts was P2X4>>P2Y(1)>P2X2>P2Y(6)>P2X1>P2Y(2)>P2Y(4)>P2X6>P2X5>P2X7>P2X3>P2Y(14)>P2Y(13)>P2Y(12). Increased intracellular Ca(2+) levels following stimulation with P2X-selective agonists indicated the presence of functional receptors. To investigate whether P2X receptors might also regulate bone formation, osteoblasts were cultured for 14days with P2X receptor agonists. The P2X1 and P2X3 receptor agonists, α,β-meATP and β,γ-meATP inhibited bone mineralisation by 70% and 90%, respectively at 1μM, with complete abolition at ≥25μM; collagen production was unaffected. Bz-ATP, a P2X7 receptor agonist, reduced bone mineralisation by 70% and 99% at 10μM and 100μM, respectively. Osteoblast alkaline phosphatase activity was similarly inhibited by these agonists, whilst ecto-nucleotide pyrophosphatase/phosphodiesterase activity was increased. The effects of α,β-meATP and Bz-ATP were attenuated by antagonists selective for the P2X1 and P2X7 receptors, respectively. Our results show that normal osteoblasts express functional P2X receptors and that the P2X1 and P2X7 receptors negatively regulate bone mineralisation.
Frontiers in Endocrinology | 2012
Andrea Brandao-Burch; Michelle L. Key; Jessal J. Patel; Timothy R. Arnett; Isabel R. Orriss
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we demonstrate that mouse osteoclasts and their precursors constitutively release ATP into their extracellular environment. Levels were highest at day 2 (precursor cells), possibly reflecting the high number of red blood cells and accessory cells present. Mature osteoclasts constitutively released ATP in the range 0.05–0.5 pmol/ml/cell. Both osteoclasts and osteoblasts express mRNA and protein for the P2X7 receptor. We found that in osteoclasts, expression levels are fourfold higher in mature cells relative to precursors, whilst in osteoblasts expression remains relatively constant during differentiation. Selective antagonists (0.1–100 μM AZ10606120, A438079, and KN-62) were used to determine whether this release was mediated via P2X7 receptors. AZ10606120, A438079, and KN-62, at 0.1–10 μM, decreased ATP release by mature osteoclasts by up to 70, 60, and 80%, respectively. No differences in cell viability were observed. ATP release also occurs via vesicular exocytosis; inhibitors of this process (1–100 μM NEM or brefeldin A) had no effect on ATP release from osteoclasts. P2X7 receptor antagonists (0.1–10 μM) also decreased ATP release from primary rat osteoblasts by up to 80%. These data show that ATP release via the P2X7 receptor contributes to extracellular ATP levels in osteoclast and osteoblast cultures, suggesting an important additional role for this receptor in autocrine/paracrine purinergic signaling in bone.
Journal of Bone and Mineral Research | 2012
Susanne Syberg; Andrea Brandao-Burch; Jessal J. Patel; Mark Hajjawi; Timothy R. Arnett; Peter Schwarz; Niklas Rye Jørgensen; Isabel R. Orriss
Clopidogrel (Plavix), a selective P2Y12 receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signaling through P2 receptors, play a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation, and activity in vitro; and (2) trabecular and cortical bone parameters in vivo. P2Y12 receptor expression by osteoblasts and osteoclasts was confirmed using qPCR and Western blotting. Clopidogrel at 10 µM and 25 µM inhibited mineralized bone nodule formation by 50% and >85%, respectively. Clopidogrel slowed osteoblast proliferation with dose‐dependent decreases in cell number (25% to 40%) evident in differentiating osteoblasts (day 7). A single dose of 10 to 25 µM clopidogrel to mature osteoblasts also reduced cell viability. At 14 days, ≥10 µM clopidogrel decreased alkaline phosphatase (ALP) activity by ≤70% and collagen formation by 40%, while increasing adipocyte formation. In osteoclasts, ≥1 µM clopidogrel inhibited formation, viability and resorptive activity. Twenty‐week‐old mice (n = 10–12) were ovariectomized or sham treated and dosed orally with clopidogrel (1 mg/kg) or vehicle (NaCl) daily for 4 weeks. Dual‐energy X‐ray absorptiometry (DXA) analysis showed clopidogrel‐treated animals had decreases of 2% and 4% in whole‐body and femoral bone mineral density (BMD), respectively. Detailed analysis of trabecular and cortical bone using micro–computed tomography (microCT) showed decreased trabecular bone volume in the tibia (24%) and femur (18%) of clopidogrel‐treated mice. Trabecular number was reduced 20%, while trabecular separation was increased up to 15%. Trabecular thickness and cortical bone parameters were unaffected. Combined, these findings indicate that long‐term exposure of bone cells to clopidogrel in vivo could negatively impact bone health.
Cell Biochemistry and Function | 2014
Jessal J. Patel; Oliver R. Butters; Timothy R. Arnett
Drugs used in the treatment of type 2 diabetes and cardiovascular disease, specifically peroxisome proliferator‐activated receptor (PPAR) agonists, have been reported to affect bone cell function and fracture risk. In this study, we assessed the direct effects of PPAR‐γ agonists (rosiglitazone and troglitazone), used in the treatment of diabetes, and a PPAR‐α agonist (fenofibrate), used to treat hyperlipidaemia, on the function of primary osteoblasts and osteoclasts. Formation of ‘trabecular’ bone structures by rat calvarial osteoblasts was reduced by up to 85% in cultures treated with rosiglitazone and by 45% in troglitazone‐treated or fenofibrate‐treated cultures; at the same time, lipid droplet formation was increased by 40–70%. The expression of key osteogenic markers was similarly downregulated in cultures treated with PPAR agonists, whereas adipogenesis markers were upregulated. Formation of osteoclasts in cultures derived from mouse marrow diminished with fenofibrate treatment, whereas both glitazones reduced resorptive activity without affecting osteoclast number. Metformin, although not a PPAR agonist, is also commonly used in the treatment of type 2 diabetes. Here, metformin was found to have no effect on bone cell function. Taken together, these data suggest that PPAR‐γ agonists may enhance bone loss via increased adipogenesis at the expense of osteoblast formation. In contrast, PPAR‐α agonists may prevent bone loss. Given that the prevalence of diabetes and cardiovascular disease is expected to rise significantly, greater attention may need to be paid to the effects of PPAR agonists on bone homeostasis. Copyright
Journal of Cellular Physiology | 2018
Jessal J. Patel; Dongxing Zhu; Britt Opdebeeck; Patrick C. D'Haese; José Luis Millán; Lucie E. Bourne; Caroline P.D. Wheeler-Jones; Timothy R. Arnett; Vicky MacRae; Isabel R. Orriss
Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast‐like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non‐calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100‐fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto‐nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi. In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.
Experimental Cell Research | 2012
Jessal J. Patel; Jennifer C. Utting; Michelle L. Key; Isabel R. Orriss; S.E.B. Taylor; Philip Whatling; Timothy R. Arnett
Purinergic Signalling | 2016
Mark Hajjawi; Jessal J. Patel; Michelangelo Corcelli; Timothy R. Arnett; Isabel R. Orriss
Bone | 2009
S.E.B. Taylor; Michelle L. Key; M. Lander; Isabel R. Orriss; Jessal J. Patel; Timothy R. Arnett
Bone | 2010
Jessal J. Patel; D. Talbot; Isabel R. Orriss; Michelle L. Key; S.E.B. Taylor; K. Karnik; Timothy R. Arnett
Bone | 2010
S.E.B. Taylor; Isabel R. Orriss; Michelle L. Key; Jessal J. Patel; Timothy R. Arnett