Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesse Mager is active.

Publication


Featured researches published by Jesse Mager.


Nature Genetics | 2001

Imprinted X inactivation maintained by a mouse Polycomb group gene.

Jianbo Wang; Jesse Mager; Yijing Chen; Elizabeth Schneider; James C. Cross; Andras Nagy; Terry Magnuson

In mammals, dosage compensation of X-linked genes is achieved by the transcriptional silencing of one X chromosome in the female (reviewed in ref. 1). This process, called X inactivation, is usually random in the embryo proper. In marsupials and the extra-embryonic region of the mouse, however, X inactivation is imprinted: the paternal X chromosome is preferentially inactivated whereas the maternal X is always active. Having more than one active X chromosome is deleterious to extra-embryonic development in the mouse. Here we show that the gene eed (embryonic ectoderm development), a member of the mouse Polycomb group (Pc-G) of genes, is required for primary and secondary trophoblast giant cell development in female embryos. Results from mice carrying a paternally inherited X-linked green fluorescent protein (GFP) transgene implicate eed in the stable maintenance of imprinted X inactivation in extra-embryonic tissues. Based on the recent finding that the Eed protein interacts with histone deacetylases, we suggest that this maintenance activity involves hypoacetylation of the inactivated paternal X chromosome in the extra-embryonic tissues.


Nature Genetics | 2003

Genome imprinting regulated by the mouse Polycomb group protein Eed

Jesse Mager; Nathan D. Montgomery; Fernando Pardo-Manuel de Villena; Terry Magnuson

Epigenetic regulation is essential for temporal, tissue-specific and parent-of-origin–dependent gene expression. It has recently been found that the mouse Polycomb group (PcG) gene Eed (embryonic ectoderm development) acts to maintain repression of the imprinted X chromosome. Here, we investigated whether Eed is also required for regulation of autosomal imprinted loci. Expression analyses showed that transcripts from the silent alleles of a subset of paternally repressed genes were present in Eed−/− embryos. Parent-of-origin methylation was preserved in these embryos, but we observed changes in the methylation status of specific CpGs in differentially methylated regions (DMRs) at affected but not at unaffected loci. These data identify Eed as a member of a new class of trans-acting factors that regulate parent-of-origin expression at imprinted loci.


Journal of Clinical Investigation | 2008

Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development.

Sook-Young Yoon; Teru Jellerette; Ana M. Salicioni; Hoi Chang Lee; Myung-sik Yoo; Kevin Coward; John Parrington; Daniel Grow; Jose Cibelli; Pablo E. Visconti; Jesse Mager; Rafael A. Fissore

Egg activation, which is the first step in the initiation of embryo development, involves both completion of meiosis and progression into mitotic cycles. In mammals, the fertilizing sperm delivers the activating signal, which consists of oscillations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)). Intracytoplasmic sperm injection (ICSI) is a technique that in vitro fertilization clinics use to treat a myriad of male factor infertility cases. Importantly, some patients who repeatedly fail ICSI also fail to induce egg activation and are, therefore, sterile. Here, we have found that sperm from patients who repeatedly failed ICSI were unable to induce [Ca(2+)](i) oscillations in mouse eggs. We have also shown that PLC, zeta 1 (PLCZ1), the sperm protein thought to induce [Ca(2+)](i) oscillations, was localized to the equatorial region of wild-type sperm heads but was undetectable in sperm from patients who had failed ICSI. The absence of PLCZ1 in these patients was further confirmed by Western blot, although genomic sequencing failed to reveal conclusive PLCZ1 mutations. Using mouse eggs, we reproduced the failure of sperm from these patients to induce egg activation and rescued it by injection of mouse Plcz1 mRNA. Together, our results indicate that the inability of human sperm to initiate [Ca(2+)](i) oscillations leads to failure of egg activation and sterility and that abnormal PLCZ1 expression underlies this functional defect.


Developmental Biology | 2003

Dynamic morphogenetic events characterize the mouse visceral endoderm

Jaime A. Rivera-Pérez; Jesse Mager; Terry Magnuson

Several lines of evidence suggest that the extraembryonic endoderm of vertebrate embryos plays an important role in the development of rostral neural structures. In mice, neural inductive signals are thought to reside in an area of visceral endoderm that expresses the Hex gene. Here, we have conducted a morphological and lineage analysis of visceral endoderm cells spanning pre- and postprimitive streak stages. Our results show that Hex-expressing cells have a tall, columnar epithelial morphology, which distinguishes them from other visceral endoderm cells. This region of visceral endoderm thickening (VET) is found overlying first the distal and then one side of the epiblast at stages between 5.5 and 5.75 days post coitum (d.p.c.). In addition, we show that the epiblast has an anteroposterior-compressed appearance that is aligned with the position of the VET. Intracellular labeling of VET/Hex-expressing cells reveals an anterior and anterolateral shift from their distal epiblast position. VET/Hex-expressing cells are first localized to the anterior side of the epiblast by 5.75 d.p.c. and form a crescent on the anterior half of the embryo at the onset of gastrulation. Subsequently, VET descendants are distributed along the embryonic/extraembryonic boundary by headfold stages at 7.5 d.p.c. The morphological characteristics and position of VET/Hex-expressing cells distinguishes the future anteroposterior axis of the embryo and provide landmarks to stage mouse embryos at preprimitive streak stages. Moreover, the morphological characteristics of pregastrulation mouse embryos together with the stereotyped shift in the position of visceral endoderm cells reveal similarities among amniote embryos that suggest an evolutionary conservation of the mechanisms that pattern the rostral neurectoderm at pregastrula stages.


Mammalian Genome | 2002

The mouse PcG gene eed is required for Hox gene repression and extraembryonic development

Jianbo Wang; Jesse Mager; Elizabeth Schnedier; Terry Magnuson

The Polycomb group (PcG) of genes was first identified in Drosophila as maintenance factors for long-term transcriptional repression of homeotic genes. In mice, the PcG protein Eed (Embryonic ectoderm development) is present in a distinct complex that interacts with histone deacetylase (HDAC) and the PcG member Ezh2 (Enhancer of zeste homolog 2), but not in the larger Polycomb repressive complex 1 (PRC1) formed by several other PcG proteins. eednull mutants manifest a distinct early gastrulation defect that occurs prior to homeotic gene expression. To determine whether Eed is also required for regulating homeotic genes, a later acting eedhypomorph mutation was analyzed. The anterior expression boundaries of several Hox genes were shifted rostrally by one segment, indicating that Eed is required for stable repression of homeotic genes. Furthermore, although the eednull/hypomorph compound heterozygotes die during mid-gestation stage, they did not show a more severe derepression of Hox genes than the eedhypomorph/hypomorph homozygotes. A detailed analysis of the mid-gestation lethality associated with the eednull/hypomorph compound heterozygotes revealed a novel function for eed in the development of secondary trophoblast giant cells during murine placenta formation. Tetraploid rescue experiments demonstrated that the defect is cell autonomous in the extraembryonic lineage. Mash2, a paternally imprinted gene important for trophoblast development, was ectopically expressed in the eed mutants. However, genetic crosses with a Mash2 null allele suggested that Eed was not required to maintain Mash2 imprinting, but could be required in a lineage specific fashion to suppress Mash2 expression.


Journal of Biological Chemistry | 2013

Compartmentalization of distinct cAMP signaling pathways in mammalian sperm.

Eva Wertheimer; Dario Krapf; José Luis de la Vega-Beltrán; Claudia Sánchez-Cárdenas; Felipe Navarrete; Douglas Haddad; Jessica Escoffier; Ana M. Salicioni; Lonny R. Levin; Jochen Buck; Jesse Mager; Alberto Darszon; Pablo E. Visconti

Background: cAMP is essential for the acquisition of sperm fertilizing capacity. The presence of transmembrane adenylyl cyclases (tmACs) in sperm remains controversial. Results: tmAC activity and its activator Gs are detected in the sperm head. Conclusion: Two cAMP synthesis pathways coexist in sperm and lead to capacitation. Significance: Understanding capacitation is essential for improvement of assisted fertilization and for finding novel contraceptive targets. Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3−-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca2+ and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.


Reproduction | 2015

Epigenetic dynamics during preimplantation development

Chelsea Marcho; Wei Cui; Jesse Mager

Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular, we highlight insights that have been gained through next-generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation.


Nature Genetics | 2005

Strategies for dissecting epigenetic mechanisms in the mouse

Jesse Mager; Marisa S. Bartolomei

Epigenetics generally refers to heritable changes in gene expression that are independent of nucleotide sequence. With complete genome sequences in hand, understanding the epigenetic control of genomes is the next step towards comprehending how the same DNA sequence gives rise to different cells, lineages and organs. Epigenetics also contributes to individual variation in normal biology and in disease states. The mouse provides a unique opportunity to understand how epigenetic differences contribute to both development and disease in a tractable mammalian system. Here we discuss current approaches and protocols used to study epigenetics in the mouse, including loss-of-function studies, mutagenesis screens, somatic cell nuclear transfer, genomics and proteomics.


Molecular and Cellular Biology | 2010

Domain-specific Response of Imprinted Genes to Reduced DNMT1

Jamie R. Weaver; Garnik Sarkisian; Christopher Krapp; Jesse Mager; Mellissa R.W. Mann; Marisa S. Bartolomei

ABSTRACT Imprinted genes are expressed in a monoallelic, parent-of-origin-specific manner. Clusters of imprinted genes are regulated by imprinting control regions (ICRs) characterized by DNA methylation of one allele. This methylation is critical for imprinting; a reduction in the DNA methyltransferase DNMT1 causes a widespread loss of imprinting. To better understand the role of DNA methylation in the regulation of imprinting, we characterized the effects of Dnmt1 mutations on the expression of a panel of imprinted genes in the embryo and placenta. We found striking differences among imprinted domains. The Igf2 and Peg3 domains showed imprinting perturbations with both null and partial loss-of-function mutations, and both domains had pairs of coordinately regulated genes with opposite responses to loss of DNMT1 function, suggesting these domains employ similar regulatory mechanisms. Genes in the Kcnq1 domain were less sensitive to the absence of DNMT1. Cdkn1c exhibited imprinting perturbations only in null mutants, while Kcnq1 and Ascl2 were largely unaffected by a loss of DNMT1 function. These results emphasize the critical role for DNA methylation in imprinting and reveal the different ways it controls gene expression.


Nature | 2014

RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast

JongDae Shin; Mary C. Wallingford; Judith Gallant; Chelsea Marcho; Baowei Jiao; Meg Byron; Michael Bossenz; Jeanne B. Lawrence; Stephen N. Jones; Jesse Mager; Ingolf Bach

In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.

Collaboration


Dive into the Jesse Mager's collaboration.

Top Co-Authors

Avatar

Kimberly D. Tremblay

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Mary C. Trask

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Ana M. Salicioni

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Chelsea Marcho

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Kun Zhang

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Pablo E. Visconti

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Terry Magnuson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Wei Cui

Shandong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Walentuk

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge