Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Ash is active.

Publication


Featured researches published by Jessica A. Ash.


Neurobiology of Disease | 2013

Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome

Ramon Velazquez; Jessica A. Ash; Brian E. Powers; Christy M. Kelley; Myla Strawderman; Zoe I. Luscher; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimers disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.


Neurobiology of Disease | 2014

Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice

Jessica A. Ash; Ramon Velazquez; Christy M. Kelley; Brian E. Powers; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimers disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large.


Journal of Nutrition | 2013

Reduced MTHFD1 Activity in Male Mice Perturbs Folate- and Choline-Dependent One-Carbon Metabolism As Well As Transsulfuration

Martha S. Field; Kelsey Shields; Elena V. Abarinov; Olga Malysheva; Robert H. Allen; Sally P. Stabler; Jessica A. Ash; Barbara J. Strupp; Patrick J. Stover; Marie A. Caudill

Impaired utilization of folate is caused by insufficient dietary intake and/or genetic variation and has been shown to prompt changes in related pathways, including choline and methionine metabolism. These pathways have been shown to be sensitive to variation within the Mthfd1 gene, which codes for a folate-metabolizing enzyme responsible for generating 1-carbon (1-C)-substituted folate derivatives. The Mthfd1(gt/+) mouse serves as a potential model of human Mthfd1 loss-of-function genetic variants that impair MTHFD1 function. This study investigated the effects of the Mthfd1(gt/+) genotype and folate intake on markers of choline, folate, methionine, and transsulfuration metabolism. Male Mthfd1(gt/+) and Mthfd1(+/+) mice were randomly assigned at weaning (3 wk of age) to either a control (2 mg/kg folic acid) or folate-deficient (0 mg/kg folic acid) diet for 5 wk. Mice were killed at 8 wk of age following 12 h of food deprivation; blood and liver samples were analyzed for choline, methionine, and transsulfuration biomarkers. Independent of folate intake, mice with the Mthfd1(gt/+) genotype had higher hepatic concentrations of choline (P = 0.005), betaine (P = 0.013), and dimethylglycine (P = 0.004) and lower hepatic concentrations of glycerophosphocholine (P = 0.002) relative to Mthfd1(+/+) mice. Mthfd1(gt/+) mice also had higher plasma concentrations of homocysteine (P = 0.0016) and cysteine (P < 0.001) as well as lower plasma concentrations of methionine (P = 0.0003) and cystathionine (P = 0.011). The metabolic alterations observed in Mthfd1(gt/+) mice indicate perturbed choline and folate-dependent 1-C metabolism and support the future use of Mthfd1(gt/+) mice as a tool to investigate the impact of impaired 1-C metabolism on disease outcomes.


The Journal of Comparative Neurology | 2014

Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young‐adult Ts65Dn and disomic mice

Christy M. Kelley; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimers disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age‐related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 months of age. Ts65Dn dams were maintained on a choline‐supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75‐neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn‐unsupplemented mice displayed region‐ and immunolabel‐dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal‐diet choline supplementation attenuates some of the genotype‐dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. J. Comp. Neurol. 522:1390–1410, 2014.


Brain Pathology | 2014

Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.

Christy M. Kelley; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimers disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5–8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype‐matched males. Further, relative to genotype‐matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post‐processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice.


Current Alzheimer Research | 2015

Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease.

Barbara J. Strupp; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Christy M. Kelley; Melissa J. Alldred; Myla Strawderman; Marie A. Caudill; Elliott J. Mufson; Stephen D. Ginsberg

Although Down syndrome (DS) can be diagnosed prenatally, currently there are no effective treatments to lessen the intellectual disability (ID) which is a hallmark of this disorder. Furthermore, starting as early as the third decade of life, DS individuals exhibit the neuropathological hallmarks of Alzheimers disease (AD) with subsequent dementia, adding substantial emotional and financial burden to their families and society at large. A potential therapeutic strategy emerging from the study of trisomic mouse models of DS is to supplement the maternal diet with additional choline during pregnancy and lactation. Studies demonstrate that maternal choline supplementation (MCS) markedly improves spatial cognition and attentional function, as well as normalizes adult hippocampal neurogenesis and offers protection to basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model of DS. These effects on neurogenesis and BFCNs correlate significantly with spatial cognition, suggesting functional relationships. In this review, we highlight some of these provocative findings, which suggest that supplementing the maternal diet with additional choline may serve as an effective and safe prenatal strategy for improving cognitive, affective, and neural functioning in DS. In light of growing evidence that all pregnancies would benefit from increased maternal choline intake, this type of recommendation could be given to all pregnant women, thereby providing a very early intervention for individuals with DS, and include babies born to mothers unaware that they are carrying a fetus with DS.


Current Alzheimer Research | 2015

Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome.

Christy M. Kelley; Jessica A. Ash; Brian E. Powers; Ramon Velazquez; Melissa J. Alldred; Milos D. Ikonomovic; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimers disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.


Neuroscience | 2017

Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring

Brian E. Powers; Christy M. Kelley; Ramon Velazquez; Jessica A. Ash; Myla Strawderman; Melissa J. Alldred; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

The Ts65Dn mouse model of Down syndrome (DS) and Alzheimers disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.


Neurotoxicology and Teratology | 2013

Dietary and genetic manipulations of folate metabolism differentially affect neocortical functions in mice

Jessica A. Ash; Xinyin Jiang; Olga Malysheva; C.G. Fiorenza; A.J. Bisogni; David A. Levitsky; Myla Strawderman; Marie A. Caudill; Patrick J. Stover; Barbara J. Strupp

Converging evidence suggests that folate-mediated one-carbon metabolism may modulate cognitive functioning throughout the lifespan, but few studies have directly tested this hypothesis. This study examined the separate and combined effects of dietary and genetic manipulations of folate metabolism on neocortical functions in mice, modeling a common genetic variant in the MTHFD1 gene in humans. Mutant (Mthfd1(gt/+)) and wildtype (WT) male mice were assigned to a folate sufficient or deficient diet at weaning and continued on these diets throughout testing on a series of visual attention tasks adapted from the 5-choice serial reaction time task. WT mice on a deficient diet exhibited impulsive responding immediately following a change in task parameters that increased demands on attention and impulse control, and on trials following an error. This pattern of findings indicates a heightened affective response to stress and/or an inability to regulate negative emotions. In contrast, Mthfd1(gt/+) mice (regardless of diet) exhibited attentional dysfunction and a blunted affective response to committing an error. The Mthfd1(gt/+) mice also showed significantly decreased expression levels for genes encoding choline dehydrogenase and the alpha 7 nicotinic cholinergic receptor. The effects of the MTHFD1 mutation were less pronounced when combined with a deficient diet, suggesting a compensatory mechanism to the combined genetic and dietary perturbation of folate metabolism. These data demonstrate that common alterations in folate metabolism can produce functionally distinct cognitive and affective changes, and highlight the importance of considering genotype when making dietary folate recommendations.


Brain Structure & Function | 2016

Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome

Brian E. Powers; Ramon Velazquez; Christy M. Kelley; Jessica A. Ash; Myla Strawderman; Melissa J. Alldred; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

Collaboration


Dive into the Jessica A. Ash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christy M. Kelley

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Powers

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar

Elliott J. Mufson

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Alldred

Nathan Kline Institute for Psychiatric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elliot Mufson

Rush University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge