Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ramon Velazquez is active.

Publication


Featured researches published by Ramon Velazquez.


Neurobiology of Disease | 2013

Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome

Ramon Velazquez; Jessica A. Ash; Brian E. Powers; Christy M. Kelley; Myla Strawderman; Zoe I. Luscher; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimers disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.


Neurobiology of Disease | 2014

Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice

Jessica A. Ash; Ramon Velazquez; Christy M. Kelley; Brian E. Powers; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

Down syndrome (DS) is marked by intellectual disability (ID) and early-onset of Alzheimers disease (AD) neuropathology, including basal forebrain cholinergic neuron (BFCN) degeneration. The present study tested the hypothesis that maternal choline supplementation (MCS) improves spatial mapping and protects against BFCN degeneration in the Ts65Dn mouse model of DS and AD. During pregnancy and lactation, dams were assigned to either a choline sufficient (1.1g/kg choline chloride) or choline supplemented (5.0g/kg choline chloride) diet. Between 13 and 17months of age, offspring were tested in the radial arm water maze (RAWM) to examine spatial mapping followed by unbiased quantitative morphometry of BFCNs. Spatial mapping was significantly impaired in unsupplemented Ts65Dn mice relative to normal disomic (2N) littermates. Additionally, a significantly lower number and density of medial septum (MS) hippocampal projection BFCNs was also found in unsupplemented Ts65Dn mice. Notably, MCS significantly improved spatial mapping and increased number, density, and size of MS BFCNs in Ts65Dn offspring. Moreover, the density and number of MS BFCNs correlated significantly with spatial memory proficiency, providing support for a functional relationship between these behavioral and morphometric effects of MCS for trisomic offspring. Thus, increasing maternal choline intake during pregnancy may represent a safe and effective treatment approach for expectant mothers carrying a DS fetus, as well as a possible means of BFCN neuroprotection during aging for the population at large.


The Journal of Comparative Neurology | 2014

Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young‐adult Ts65Dn and disomic mice

Christy M. Kelley; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

Down syndrome (DS), trisomy 21, is a multifaceted condition marked by intellectual disability and early presentation of Alzheimers disease (AD) neuropathological lesions including degeneration of the basal forebrain cholinergic neuron (BFCN) system. Although DS is diagnosable during gestation, there is no treatment option for expectant mothers or DS individuals. Using the Ts65Dn mouse model of DS that displays age‐related degeneration of the BFCN system, we investigated the effects of maternal choline supplementation on the BFCN system in adult Ts65Dn mice and disomic (2N) littermates at 4.3–7.5 months of age. Ts65Dn dams were maintained on a choline‐supplemented diet (5.1 g/kg choline chloride) or a control, unsupplemented diet with adequate amounts of choline (1 g/kg choline chloride) from conception until weaning of offspring; post weaning, offspring were fed the control diet. Mice were transcardially perfused with paraformaldehyde, and brains were sectioned and immunolabeled for choline acetyltransferase (ChAT) or p75‐neurotrophin receptor (p75NTR). BFCN number and size, the area of the regions, and the intensity of hippocampal labeling were determined. Ts65Dn‐unsupplemented mice displayed region‐ and immunolabel‐dependent increased BFCN number, larger areas, smaller BFCNs, and overall increased hippocampal ChAT intensity compared with 2N unsupplemented mice. These effects were partially normalized by maternal choline supplementation. Taken together, the results suggest a developmental imbalance in the Ts65Dn BFCN system. Early maternal‐diet choline supplementation attenuates some of the genotype‐dependent alterations in the BFCN system, suggesting this naturally occurring nutrient as a treatment option for pregnant mothers with knowledge that their offspring is trisomy 21. J. Comp. Neurol. 522:1390–1410, 2014.


Brain Pathology | 2014

Sex differences in the cholinergic basal forebrain in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.

Christy M. Kelley; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

In the Down syndrome (DS) population, there is an early incidence of dementia and neuropathology similar to that seen in sporadic Alzheimers disease (AD), including dysfunction of the basal forebrain cholinergic neuron (BFCN) system. Using Ts65Dn mice, a model of DS and AD, we examined differences in the BFCN system between male and female segmentally trisomic (Ts65Dn) and disomic (2N) mice at ages 5–8 months. Quantitative stereology was applied to BFCN subfields immunolabeled for choline acetyltransferase (ChAT) within the medial septum/vertical limb of the diagonal band (MS/VDB), horizontal limb of the diagonal band (HDB) and nucleus basalis of Meynert/substantia innominata (NBM/SI). We found no sex differences in neuron number or subregion area measurement in the MS/VDB or HDB. However, 2N and Ts65Dn females showed an average 34% decrease in BFCN number and an average 20% smaller NBM/SI region area compared with genotype‐matched males. Further, relative to genotype‐matched males, female mice had smaller BFCNs in all subregions. These findings demonstrate that differences between the sexes in BFCNs of young adult Ts65Dn and 2N mice are region and genotype specific. In addition, changes in post‐processing tissue thickness suggest altered parenchymal characteristics between male and female Ts65Dn mice.


npj Aging and Mechanisms of Disease | 2015

The mammalian target of rapamycin at the crossroad between cognitive aging and Alzheimer’s disease

Joshua S. Talboom; Ramon Velazquez; Salvatore Oddo

Age-dependent cognitive decline is a major debilitating event affecting even individuals who are otherwise healthy. Understanding the molecular basis underlying these changes may increase the healthspan of the elderly population. It may also reveal insights into the pathogenesis of numerous neurodegenerative disorders characterized by cognitive deficits, as aging is the major risk factor for most of these disorders. Alzheimer’s disease (AD), the most common neurodegenerative disorder, first manifests itself as deficits in encoding new memories. As AD progresses, these deficits spread to other cognitive domains that further debilitate the person before contributing to their demise. Suppression of the mammalian target of rapamycin (mTOR) increases healthspan and lifespan in several organisms. Numerous reports have linked alterations in mTOR signaling to age-dependent cognitive decline and the pathogenesis of AD. This review will discuss recent work highlighting the complex role of mTOR in cognitive aging and in the pathogenesis of AD.


Neurobiology of Aging | 2017

Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease

Ramon Velazquez; An Tran; Egide Ishimwe; Larry Denner; Nikhil Dave; Salvatore Oddo; Kelly T. Dineley

Alzheimers disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling.


Current Alzheimer Research | 2015

Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease.

Barbara J. Strupp; Brian E. Powers; Ramon Velazquez; Jessica A. Ash; Christy M. Kelley; Melissa J. Alldred; Myla Strawderman; Marie A. Caudill; Elliott J. Mufson; Stephen D. Ginsberg

Although Down syndrome (DS) can be diagnosed prenatally, currently there are no effective treatments to lessen the intellectual disability (ID) which is a hallmark of this disorder. Furthermore, starting as early as the third decade of life, DS individuals exhibit the neuropathological hallmarks of Alzheimers disease (AD) with subsequent dementia, adding substantial emotional and financial burden to their families and society at large. A potential therapeutic strategy emerging from the study of trisomic mouse models of DS is to supplement the maternal diet with additional choline during pregnancy and lactation. Studies demonstrate that maternal choline supplementation (MCS) markedly improves spatial cognition and attentional function, as well as normalizes adult hippocampal neurogenesis and offers protection to basal forebrain cholinergic neurons (BFCNs) in the Ts65Dn mouse model of DS. These effects on neurogenesis and BFCNs correlate significantly with spatial cognition, suggesting functional relationships. In this review, we highlight some of these provocative findings, which suggest that supplementing the maternal diet with additional choline may serve as an effective and safe prenatal strategy for improving cognitive, affective, and neural functioning in DS. In light of growing evidence that all pregnancies would benefit from increased maternal choline intake, this type of recommendation could be given to all pregnant women, thereby providing a very early intervention for individuals with DS, and include babies born to mothers unaware that they are carrying a fetus with DS.


Current Alzheimer Research | 2015

Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome.

Christy M. Kelley; Jessica A. Ash; Brian E. Powers; Ramon Velazquez; Melissa J. Alldred; Milos D. Ikonomovic; Stephen D. Ginsberg; Barbara J. Strupp; Elliott J. Mufson

Down syndrome (DS), caused by trisomy of chromosome 21, is marked by intellectual disability (ID) and early onset of Alzheimers disease (AD) neuropathology including hippocampal cholinergic projection system degeneration. Here we determined the effects of age and maternal choline supplementation (MCS) on hippocampal cholinergic deficits in Ts65Dn mice compared to 2N mice sacrificed at 6-8 and 14-18 months of age. Ts65Dn mice and disomic (2N) littermates sacrificed at ages 6-8 and 14-18 mos were used for an aging study and Ts65Dn and 2N mice derived from Ts65Dn dams were maintained on either a choline-supplemented or a choline-controlled diet (conception to weaning) and examined at 14-18 mos for MCS studies. In the latter, mice were behaviorally tested on the radial arm Morris water maze (RAWM) and hippocampal tissue was examined for intensity of choline acetyltransferase (ChAT) immunoreactivity. Hippocampal ChAT activity was evaluated in a separate cohort. ChAT-positive fiber innervation was significantly higher in the hippocampus and dentate gyrus in Ts65Dn mice compared with 2N mice, independent of age or maternal diet. Similarly, hippocampal ChAT activity was significantly elevated in Ts65Dn mice compared to 2N mice, independent of maternal diet. A significant increase with age was seen in hippocampal cholinergic innervation of 2N mice, but not Ts65Dn mice. Degree of ChAT intensity correlated negatively with spatial memory ability in unsupplemented 2N and Ts65Dn mice, but positively in MCS 2N mice. The increased innervation produced by MCS appears to improve hippocampal function, making this a therapy that may be exploited for future translational approaches in human DS.


Neuroscience | 2017

Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring

Brian E. Powers; Christy M. Kelley; Ramon Velazquez; Jessica A. Ash; Myla Strawderman; Melissa J. Alldred; Stephen D. Ginsberg; Elliott J. Mufson; Barbara J. Strupp

The Ts65Dn mouse model of Down syndrome (DS) and Alzheimers disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NBM/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.


Aging Cell | 2018

Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits

Ramon Velazquez; Eric Ferreira; An Tran; Emily C. Turner; Ramona Belfiore; Caterina Branca; Salvatore Oddo

Misfolded and hyperphosphorylated tau accumulates in several neurodegenerative disorders including Alzheimers disease, frontotemporal dementia with Parkinsonism, corticobasal degeneration, progressive supranuclear palsy, Down syndrome, and Picks disease. Tau is a microtubule‐binding protein, and its role in microtubule stabilization is well defined. In contrast, while growing evidence suggests that tau is also involved in synaptic physiology, a complete assessment of tau function in the adult brain has been hampered by robust developmental compensation of other microtubule‐binding proteins in tau knockout mice. To circumvent these developmental compensations and assess the role of tau in the adult brain, we generated an adeno‐associated virus (AAV) expressing a doxycycline‐inducible short‐hairpin (Sh) RNA targeted to tau, herein referred to as AAV‐ShRNATau. We performed bilateral stereotaxic injections in 7‐month‐old C57Bl6/SJL wild‐type mice with either the AAV‐ShRNATau or a control AAV. We found that acute knockdown of tau in the adult hippocampus significantly impaired motor coordination and spatial memory. Blocking the expression of the AAV‐ShRNATau, thereby allowing tau levels to return to control levels, restored motor coordination and spatial memory. Mechanistically, the reduced tau levels were associated with lower BDNF levels, reduced levels of synaptic proteins associated with learning, and decreased spine density. We provide compelling evidence that tau is necessary for motor and cognitive function in the adult brain, thereby firmly supporting that tau loss‐of‐function may contribute to the clinical manifestations of many tauopathies. These findings have profound clinical implications given that anti‐tau therapies are in clinical trials for Alzheimers disease.

Collaboration


Dive into the Ramon Velazquez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christy M. Kelley

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Powers

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar

Elliott J. Mufson

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa J. Alldred

Nathan Kline Institute for Psychiatric Research

View shared research outputs
Top Co-Authors

Avatar

An Tran

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge