Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Dominguez is active.

Publication


Featured researches published by Jessica A. Dominguez.


Journal of Immunology | 2011

The Role of Heat Shock Protein 70 in Mediating Age-Dependent Mortality in Sepsis

Kevin W. McConnell; Amy C. Fox; Andrew T. Clark; Nai Yuan Nicholas Chang; Jessica A. Dominguez; Alton B. Farris; Timothy G. Buchman; Clayton R. Hunt; Craig M. Coopersmith

Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70−/− and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70−/− and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70−/− mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70−/− mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70−/− mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.


Shock | 2011

Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.

Jessica A. Dominguez; Paul Vithayathil; Ludmila Khailova; Christopher P. Lawrance; Alexandr J. Samocha; Enjae Jung; Ann Leathersich; W. Michael Dunne; Craig M. Coopersmith

Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.


Shock | 2012

The endogenous bacteria alter gut epithelial apoptosis and decrease mortality following Pseudomonas aeruginosa pneumonia.

Amy C. Fox; Kevin W. McConnell; Benyam P. Yoseph; Elise R. Breed; Zhe Liang; Andrew T. Clark; David O'Donnell; Brendan Zee-Cheng; Enjae Jung; Jessica A. Dominguez; W. Michael Dunne; Eileen M. Burd; Craig M. Coopersmith

ABSTRACT The endogenous bacteria have been hypothesized to play a significant role in the pathophysiology of critical illness, although their role in sepsis is poorly understood. The purpose of this study was to determine how commensal bacteria alter the host response to sepsis. Conventional and germ-free (GF) C57Bl/6 mice were subjected to Pseudomonas aeruginosa pneumonia. All GF mice died within 2 days, whereas 44% of conventional mice survived for 7 days (P = 0.001). Diluting the dose of bacteria 10-fold in GF mice led to similar survival in GF and conventional mice. When animals with similar mortality were assayed for intestinal integrity, GF mice had lower levels of intestinal epithelial apoptosis but similar levels of proliferation and intestinal permeability. Germ-free mice had significantly lower levels of tumor necrosis factor and interleukin 1&bgr; in bronchoalveolar lavage fluid compared with conventional mice without changes in systemic cytokine production. Under conventional conditions, sepsis unmasks lymphocyte control of intestinal epithelial apoptosis, because sepsis induces a greater increase in gut apoptosis in Rag-1−/− mice than in wild-type mice. However, in a separate set of experiments, gut apoptosis was similar between septic GF Rag-1−/− mice and septic GF wild-type mice. These data demonstrate that the endogenous bacteria play a protective role in mediating mortality from pneumonia-induced sepsis, potentially mediated through altered intestinal apoptosis and the local proinflammatory response. In addition, sepsis-induced lymphocyte-dependent increases in gut epithelial apoptosis appear to be mediated by the endogenous bacteria.


Critical Care Medicine | 2010

Cancer causes increased mortality and is associated with altered apoptosis in murine sepsis

Amy C. Fox; Charles M. Robertson; Brian Belt; Andrew T. Clark; Katherine Chang; Ann Leathersich; Jessica A. Dominguez; Erin E. Perrone; W. Michael Dunne; Richard S. Hotchkiss; Timothy G. Buchman; David C. Linehan; Craig M. Coopersmith

Objective:Whereas most septic patients have an underlying comorbidity, most animal models of sepsis use mice that were healthy before the onset of infection. Malignancy is the most common comorbidity associated with sepsis. The purpose of this study was to determine whether mice with cancer have a different response to sepsis than healthy animals. Design:Prospective, randomized controlled study. Setting:Animal laboratory in a university medical center. Subjects:C57Bl/6 mice. Interventions:Animals received a subcutaneous injection of either 250,000 cells of the transplantable pancreatic adenocarcinoma cell line Pan02 (cancer) or phosphate-buffered saline (healthy). Three weeks later, mice given Pan02 cells had reproducible, nonmetastatic tumors. Both groups of mice then underwent intratracheal injection of either Pseudomonas aeruginosa (septic) or 0.9% NaCl (sham). Animals were killed 24 hrs postoperatively or followed-up 7 days for survival. Measurements and Main Results:Mice with cancer and healthy mice appeared similar when subjected to sham operation, although cancer animals had lower levels of T- and B-lymphocyte apoptosis. Septic mice with cancer had increased mortality compared to previously healthy septic mice subjected to the identical injury (52% vs. 28%; p = .04). This was associated with increased bacteremia but no difference in local pulmonary infection. Septic mice with cancer also had increased intestinal epithelial apoptosis. Although sepsis induced an increase in T- and B-lymphocyte apoptosis in all animals, septic mice with cancer had decreased T- and B-lymphocyte apoptosis compared to previously healthy septic mice. Serum and pulmonary cytokines, lung histology, complete blood counts, and intestinal proliferation were similar between septic mice with cancer and previously healthy septic mice. Conclusions:When subjected to the same septic insult, mice with cancer have increased mortality compared to previously healthy animals. Decreased systemic bacterial clearance and alterations in intestinal epithelial and lymphocyte apoptosis may help explain this differential response.


Anesthesiology | 2013

Probiotic Administration Reduces Mortality and Improves Intestinal Epithelial Homeostasis in Experimental Sepsis

Ludmila Khailova; Daniel N. Frank; Jessica A. Dominguez; Paul E. Wischmeyer

Background:Recent clinical trials indicate that probiotic administration in critical illness has potential to reduce nosocomial infections and improve clinical outcome. However, the mechanism(s) of probiotic-mediated protection against infection and sepsis remain elusive. The authors evaluated the effects of Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) on mortality, bacterial translocation, intestinal epithelial homeostasis, and inflammatory response in experimental model of septic peritonitis. Methods:Cecal ligation and puncture (n = 14 per group) or sham laparotomy (n = 8 per group) were performed on 3-week-old FVB/N weanling mice treated concomitantly with LGG, BL, or vehicle (orally gavaged). At 24 h, blood and colonic tissue were collected. In survival studies, mice were given probiotics every 24 h for 7 days (LGG, n = 14; BL, n = 10; or vehicle, n = 13; shams, n = 3 per group). Results:Probiotics significantly improved mortality after sepsis (92 vs. 57% mortality for LGG and 92 vs. 50% mortality for BL; P = 0.003). Bacteremia was markedly reduced in septic mice treated with either probiotic compared with vehicle treatment (4.39 ± 0.56 vs. 1.07 ± 1.54; P = 0.0001 for LGG; vs. 2.70 ± 1.89; P = 0.016 for BL; data are expressed as mean ± SD). Sepsis in untreated mice increased colonic apoptosis and reduced colonic proliferation. Probiotics significantly reduced markers of colonic apoptosis and returned colonic proliferation to sham levels. Probiotics led to significant reductions in systemic and colonic inflammatory cytokine expression versus septic animals. Our data suggest that involvement of the protein kinase B pathway (via AKT) and down-regulation of Toll-like receptor 2/Toll-like receptor 4 via MyD88 in the colon may play mechanistic roles in the observed probiotic benefits. Conclusions:Our data demonstrate that probiotic administration at initiation of sepsis can improve survival in pediatric experimental sepsis. The mechanism of this protection involves prevention of systemic bacteremia, perhaps via improved intestinal epithelial homeostasis, and attenuation of the local and systemic inflammatory responses.


Shock | 2016

Mechanisms of Intestinal Barrier Dysfunction in Sepsis.

Benyam P. Yoseph; Nathan J. Klingensmith; Zhe Liang; Elise R. Breed; Eileen M. Burd; Rohit Mittal; Jessica A. Dominguez; Benjamin Petrie; Mandy L. Ford; Craig M. Coopersmith

ABSTRACT Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.


Critical Care Medicine | 2013

Inhibition of IKKβ in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality.

Jessica A. Dominguez; Alexandr J. Samocha; Zhe Liang; Eileen M. Burd; Alton B. Farris; Craig M. Coopersmith

Objectives:Nuclear factor-&kgr;B is a critical regulator of cell-survival genes and the host inflammatory response. The purpose of this study was to investigate the role of enterocyte-specific NF-kB in sepsis through selective ablation of IkB kinase. Design:Prospective, randomized controlled study. Setting:Animal laboratories in university medical centers. Subjects and Interventions:Mice lacking functional NF-kB in their intestinal epithelium (Vil-Cre/Ikk&bgr;f/&Dgr;) and wild-type mice were subjected to sham laparotomy or cecal ligation and puncture. Animals were killed at 24 hours or followed 7 days for survival. Measurements and Main Results:Septic wild-type mice had decreased villus length compared with sham mice, whereas villus atrophy was further exacerbated in septic Vil-Cre/Ikk&bgr;f/&Dgr; mice. Sepsis induced an increase in intestinal epithelial apoptosis compared with sham mice, which was further exacerbated in Vil-Cre/Ikk&bgr;f/&Dgr; mice. Sepsis induced intestinal hyperpermeability in wild-type mice compared with sham mice, which was further exacerbated in septic Vil-Cre/Ikk&bgr;f/&Dgr; mice. This was associated with increased intestinal expression of claudin-2 in septic wild-type mice, which was further increased in septic Vil-Cre/Ikk&bgr;f/&Dgr; mice. Both, pro-inflammatory and anti-inflammatory cytokines were increased in serum following cecal ligation and puncture, and interleukin 10 and monocyte chemoattractant protein-1 levels were higher in septic Vil-Cre/Ikk&bgr;f/&Dgr; mice than in septic wild-type mice. All septic mice were bacteremic, but no differences in bacterial load were identified between wild-type and Vil-Cre/Ikk&bgr;f/&Dgr; mice. To determine the functional significance of these results, animals were followed for survival. Septic wild-type mice had lower mortality than septic Vil-Cre/Ikk&bgr;f/&Dgr; mice (47% vs 80%, p < 0.05). Antitumor necrosis factor administration decreased intestinal apoptosis, permeability, and mortality in wild-type septic mice, and a similar improvement in intestinal integrity and survival were seen when antitumor necrosis factor was given to Vil-Cre/Ikk&bgr;f/&Dgr; mice. Conclusions:Enterocyte-specific NF-kB has a beneficial role in sepsis by partially preventing sepsis-induced increases in apoptosis and permeability, which are associated with worsening mortality.


Shock | 2012

Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis

Erin E. Perrone; Enjae Jung; Elise R. Breed; Jessica A. Dominguez; Zhe Liang; Andrew T. Clark; W. Michael Dunne; Eileen M. Burd; Craig M. Coopersmith

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) pneumonia–induced sepsis is a common cause of morbidity in the intensive care unit. Although pneumonia is initiated in the lungs, extrapulmonary manifestations occur commonly. In light of the key role the intestine plays in the pathophysiology of sepsis, we sought to determine whether MRSA pneumonia induces intestinal injury. FVB/N mice were subjected to MRSA or sham pneumonia and killed 24 h later. Septic animals had a marked increase in intestinal epithelial apoptosis by both hematoxylin-eosin and active caspase 3 staining. Methicillin-resistant S. aureus–induced intestinal apoptosis was associated with an increase in the expression of the proapoptotic proteins Bid and Bax and the antiapoptotic protein Bcl-xL in the mitochondrial pathway. In the receptor-mediated pathway, MRSA pneumonia induced an increase in Fas ligand but decreased protein levels of Fas, FADD, pFADD, TNF-R1, and TRADD. To assess the functional significance of these changes, MRSA pneumonia was induced in mice with genetic manipulations in proteins in either the mitochondrial or receptor-mediated pathways. Both Bid−/− mice and animals with intestine-specific overexpression of Bcl-2 had decreased intestinal apoptosis compared with wild-type animals. In contrast, Fas ligand−/− mice had no alterations in apoptosis. To determine if these findings were organism-specific, similar experiments were performed in mice subjected to Pseudomonas aeruginosa pneumonia. Pseudomonas aeruginosa induced gut apoptosis, but unlike MRSA, this was associated with increased Bcl-2 and TNF-R1 and decreased Fas. Methicillin-resistant S. aureus pneumonia thus induces organism-specific changes in intestinal apoptosis via changes in both the mitochondrial and receptor-mediated pathways, although the former may be more functionally significant.


Shock | 2012

Cecal ligation and puncture followed by methicillin-resistant Staphylococcus aureus pneumonia increases mortality in mice and blunts production of local and systemic cytokines.

Enjae Jung; Erin E. Perrone; Zhe Liang; Elise R. Breed; Jessica A. Dominguez; Andrew T. Clark; Amy C. Fox; W. Michael Dunne; Eileen M. Burd; Alton B. Farris; Richard S. Hotchkiss; Craig M. Coopersmith

ABSTRACT Mortality in the intensive care unit frequently results from the synergistic effect of two temporally distinct infections. This study examined the pathophysiology of a new model of intra-abdominal sepsis followed by methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Mice underwent cecal ligation and puncture (CLP) or sham laparotomy followed 3 days later by an intratracheal injection of MRSA or saline. Both CLP/saline and sham/MRSA mice had 100% survival, whereas animals with CLP followed by MRSA pneumonia had 67% 7-day survival. Animals subjected to CLP/MRSA had increased bronchoalveolar lavage concentrations of MRSA compared with sham/MRSA animals. Animals subjected to sham/MRSA pneumonia had increased bronchoalveolar lavage levels of interleukin 6 (IL-6), tumor necrosis factor &agr;, and granulocyte colony-stimulating factor compared with those given intratracheal saline, whereas CLP/MRSA mice had a blunted local inflammatory response with markedly decreased cytokine levels. Similarly, animals subjected to CLP/saline had increased peritoneal lavage levels of IL-6 and IL-1&bgr; compared with those subjected to sham laparotomy, whereas this response was blunted in CLP/MRSA mice. Systemic cytokines were upregulated in both CLP/saline and sham/MRSA mice, and this was blunted by the combination of CLP/MRSA. In contrast, no synergistic effect on pneumonia severity, white blood cell count, or lymphocyte apoptosis was identified in CLP/MRSA mice compared with animals with either insult in isolation. These results indicate that a clinically relevant model of CLP followed by MRSA pneumonia causes higher mortality than could have been predicted from studying either infection in isolation, and this was associated with a blunted local (pulmonary and peritoneal) and systemic inflammatory response and decreased ability to clear infection.


PLOS ONE | 2012

Intestine-Specific Mttp Deletion Decreases Mortality and Prevents Sepsis-Induced Intestinal Injury in a Murine Model of Pseudomonas aeruginosa Pneumonia

Jessica A. Dominguez; Yan Xie; W. Michael Dunne; Benyam P. Yoseph; Eileen M. Burd; Craig M. Coopersmith; Nicholas O. Davidson

Background The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption. Methodology/Principal Findings Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. Conclusions/Significance These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and hepatic lipid flux.

Collaboration


Dive into the Jessica A. Dominguez's collaboration.

Top Co-Authors

Avatar

Craig M. Coopersmith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew T. Clark

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy C. Fox

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Enjae Jung

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin E. Perrone

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge