Jessica C.S. Brown
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica C.S. Brown.
The Plant Cell | 2002
Cory A. Christensen; Steven W. Gorsich; Ryan H. Brown; Linda G. Jones; Jessica C.S. Brown; Janet M. Shaw; Gary N. Drews
Little is known about the molecular processes that govern female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report the identification and phenotypic analysis of 31 new FG mutants in Arabidopsis. These mutants have defects throughout development, indicating that FG-expressed genes govern essentially every step of FG development. To identify genes involved in cell death during FG development, we analyzed this mutant collection for lines with cell death defects. From this analysis, we identified one mutant, gfa2, with a defect in synergid cell death. Additionally, the gfa2 mutant has a defect in fusion of the polar nuclei. We isolated the GFA2 gene and show that it encodes a J-domain–containing protein. Of the J-domain–containing proteins in Saccharomyces cerevisiae (budding yeast), GFA2 is most similar to Mdj1p, which functions as a chaperone in the mitochondrial matrix. GFA2 is targeted to mitochondria in Arabidopsis and partially complements a yeast mdj1 mutant, suggesting that GFA2 is the Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants.
Cell Host & Microbe | 2011
Cheryl D. Chun; Jessica C.S. Brown; Hiten D. Madhani
The antiphagocytic polysaccharide capsule of the human fungal pathogen Cryptococcus neoformans is a major virulence attribute. However, previous studies of the pleiotropic virulence determinant Gat201, a GATA family transcription factor, suggested that capsule-independent antiphagocytic mechanisms exist. We have determined that Gat201 controls the mRNA levels of ∼1100 genes (16% of the genome) and binds the upstream regions of ∼130 genes. Seven Gat201-bound genes encode for putative and known transcription factors--including two previously implicated in virulence--suggesting an extensive regulatory network. Systematic analysis pinpointed two critical Gat201-bound genes, GAT204 (a transcription factor) and BLP1, which account for much of the capsule-independent antiphagocytic function of Gat201. A strong correlation was observed between the quantitative effects of single and double mutants on phagocytosis in vitro and on host colonization in vivo. This genetic dissection provides evidence that capsule-independent antiphagocytic mechanisms are pivotal for successful mammalian infection by C. neoformans.
Mbio | 2014
Arielle Butts; Kristy Koselny; Yeissa Chabrier-Roselló; Camile P. Semighini; Jessica C.S. Brown; Xuying Wang; Sivakumar Annadurai; Louis DiDone; Julie Tabroff; Wayne E. Childers; Magid Abou-Gharbia; Melanie Wellington; Maria E. Cardenas; Hiten D. Madhani; Joseph Heitman; Damian J. Krysan
ABSTRACT Cryptococcosis is an infectious disease of global significance for which new therapies are needed. Repurposing previously developed drugs for new indications can expedite the translation of new therapies from bench to beside. Here, we characterized the anti-cryptococcal activity and antifungal mechanism of estrogen receptor antagonists related to the breast cancer drugs tamoxifen and toremifene. Tamoxifen and toremifene are fungicidal and synergize with fluconazole and amphotericin B in vitro. In a mouse model of disseminated cryptococcosis, tamoxifen at concentrations achievable in humans combines with fluconazole to decrease brain burden by ~1 log10. In addition, these drugs inhibit the growth of Cryptococcus neoformans within macrophages, a niche not accessible by current antifungal drugs. Toremifene and tamoxifen directly bind to the essential EF hand protein calmodulin, as determined by thermal shift assays with purified C. neoformans calmodulin (Cam1), prevent Cam1 from binding to its well-characterized substrate calcineurin (Cna1), and block Cna1 activation. In whole cells, toremifene and tamoxifen block the calcineurin-dependent nuclear localization of the transcription factor Crz1. A large-scale chemical genetic screen with a library of C. neoformans deletion mutants identified a second EF hand-containing protein, which we have named calmodulin-like protein 1 (CNAG_05655), as a potential target, and further analysis showed that toremifene directly binds Cml1 and modulates its ability to bind and activate Cna1. Importantly, tamoxifen analogs (idoxifene and methylene-idoxifene) with increased calmodulin antagonism display improved anti-cryptococcal activity, indicating that calmodulin inhibition can be used to guide a systematic optimization of the anti-cryptococcal activity of the triphenylethylene scaffold. IMPORTANCE Worldwide, cryptococcosis affects approximately 1 million people annually and kills more HIV/AIDS patients per year than tuberculosis. The gold standard therapy for cryptococcosis is amphotericin B plus 5-flucytosine, but this regimen is not readily available in regions where resources are limited and where the burden of disease is highest. Herein, we show that molecules related to the breast cancer drug tamoxifen are fungicidal for Cryptococcus and display a number of pharmacological properties desirable for an anti-cryptococcal drug, including synergistic fungicidal activity with fluconazole in vitro and in vivo, oral bioavailability, and activity within macrophages. We have also demonstrated that this class of molecules targets calmodulin as part of their mechanism of action and that tamoxifen analogs with increased calmodulin antagonism have improved anti-cryptococcal activity. Taken together, these results indicate that tamoxifen is a pharmacologically attractive scaffold for the development of new anti-cryptococcal drugs and provide a mechanistic basis for its further optimization. Worldwide, cryptococcosis affects approximately 1 million people annually and kills more HIV/AIDS patients per year than tuberculosis. The gold standard therapy for cryptococcosis is amphotericin B plus 5-flucytosine, but this regimen is not readily available in regions where resources are limited and where the burden of disease is highest. Herein, we show that molecules related to the breast cancer drug tamoxifen are fungicidal for Cryptococcus and display a number of pharmacological properties desirable for an anti-cryptococcal drug, including synergistic fungicidal activity with fluconazole in vitro and in vivo, oral bioavailability, and activity within macrophages. We have also demonstrated that this class of molecules targets calmodulin as part of their mechanism of action and that tamoxifen analogs with increased calmodulin antagonism have improved anti-cryptococcal activity. Taken together, these results indicate that tamoxifen is a pharmacologically attractive scaffold for the development of new anti-cryptococcal drugs and provide a mechanistic basis for its further optimization.
Cell | 2014
Jessica C.S. Brown; Justin Nelson; Benjamin VanderSluis; Raamesh Deshpande; Arielle Butts; Sarah Kagan; Itzhack Polacheck; Damian J. Krysan; Chad L. Myers; Hiten D. Madhani
The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.
Mutation Research-dna Repair | 1999
Kenneth F Grossmann; Jessica C.S. Brown; Robb E. Moses
Cisplatin (CDDP) has been used as a DNA cross-linking agent to evaluate whether there is a specific cell cycle checkpoint response to such damage in Saccharomyces cerevisiae (S. cerevisiae). Fluorescent-activated cell sorting (FACS) analysis showed only a G2/M checkpoint, normal exit from G1 and progression through S-phase following alpha-factor arrest and CDDP treatment. Of the checkpoint mutants tested, rad9, rad17 and rad24, did not show increased sensitivity to CDDP compared to isogenic wild-type cells. However, other checkpoint mutants tested (mec1, mec3 and rad53) showed increased sensitivity to CDDP, as did controls with a defect in excision repair (rad1 and rad14) or a defect in recombination (rad51 and rad52). Thus, by survival and cell cycle kinetics, it appears that DNA cross-links do not inhibit entry into S-phase or slow DNA replication and that replication continues after cisplatin treatment in yeast.
Science Translational Medicine | 2017
Tyson R. Chiaro; Ray Soto; W. Zac Stephens; Jason L. Kubinak; Charisse Petersen; Lasha Gogokhia; Rickesha Bell; Julio Delgado; James Cox; Jessica C.S. Brown; David J. Stillman; Ryan M. O’Connell; Anne E. Tebo; June L. Round
Saccharomyces cerevisiae induces purine metabolism in mouse intestinal epithelia, resulting in an exacerbation of colitis. Fungi and inflammatory bowel disease Crohn’s disease is associated with an increase in antibodies against the yeast Saccharomyces cerevisiae, implicating a role for this fungus in inflammatory bowel disease. Chiaro et al. now demonstrate that increased colonization of the mouse gut with S. cerevisiae aggravated colitis by increasing purine metabolism, leading to greater damage of the gut epithelia. Treatment with the clinical drug allopurinol, which blocks the purine pathway, reversed this damage. The authors report a positive correlation between anti-yeast antibodies in human serum and increased purine metabolism. These results suggest that allopurinol could be used for treating Crohn’s disease associated with increased anti-yeast antibodies. The commensal microbiota has an important impact on host health, which is only beginning to be elucidated. Despite the presence of fungal, archaeal, and viral members, most studies have focused solely on the bacterial microbiota. Antibodies against the yeast Saccharomyces cerevisiae are found in some patients with Crohn’s disease (CD), suggesting that the mycobiota may contribute to disease severity. We report that S. cerevisiae exacerbated intestinal disease in a mouse model of colitis and increased gut barrier permeability. Transcriptome analysis of colon tissue from germ-free mice inoculated with S. cerevisiae or another fungus, Rhodotorula aurantiaca, revealed that S. cerevisiae colonization affected the intestinal barrier and host metabolism. A fecal metabolomics screen of germ-free animals demonstrated that S. cerevisiae colonization enhanced host purine metabolism, leading to an increase in uric acid production. Treatment with uric acid alone worsened disease and increased gut permeability. Allopurinol, a clinical drug used to reduce uric acid, ameliorated colitis induced by S. cerevisiae in mice. In addition, we found a positive correlation between elevated uric acid and anti-yeast antibodies in human sera. Thus, yeast in the gut may be able to potentiate metabolite production that negatively affects the course of inflammatory bowel disease.
PLOS Biology | 2017
Morgan A. Wambaugh; Viplendra P. S. Shakya; Adam J. Lewis; Matthew A. Mulvey; Jessica C.S. Brown
Antibiotic-resistant infections kill approximately 23,000 people and cost
PLOS Genetics | 2012
Jessica C.S. Brown; Hiten D. Madhani
20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Infection and Immunity | 2017
Steven T. Denham; Surbhi Verma; Raymond C. Reynolds; Colleen L. Worne; Joshua M. Daugherty; Thomas E. Lane; Jessica C.S. Brown
In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi.
Expert Review of Clinical Pharmacology | 2017
Elena Y. Enioutina; Lida Teng; Tatyana V. Fateeva; Jessica C.S. Brown; Kathleen M. Job; Valentina V. Bortnikova; Lubov V. Krepkova; Michael I. Gubarev; Catherine M. T. Sherwin
ABSTRACT Cryptococcus neoformans is a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A key C. neoformans virulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, the liv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, the cnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observed in vitro correlated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.