Jessica L. Cooperstone
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica L. Cooperstone.
Molecular Nutrition & Food Research | 2015
Jessica L. Cooperstone; Robin A. Ralston; Kenneth M. Riedl; Thomas C. Haufe; Ralf M. Schweiggert; Samantha A. King; Cynthia Timmers; David M. Francis; Gregory B. Lesinski; Steven K. Clinton; Steven J. Schwartz
SCOPE Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. METHODS AND RESULTS Following a randomized cross-over design, subjects (n = 11, 6 M/5 F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 h and triglyceride-rich lipoprotein fractions of plasma were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (p < 0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. CONCLUSION Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods.
Journal of Nutrition | 2014
Rachel E. Kopec; Jessica L. Cooperstone; Ralf M. Schweiggert; Gregory S. Young; Earl H. Harrison; David M. Francis; Steven K. Clinton; Steven J. Schwartz
Dietary lipids have been shown to increase bioavailability of provitamin A carotenoids from a single meal, but the effects of dietary lipids on conversion to vitamin A during absorption are essentially unknown. Based on previous animal studies, we hypothesized that the consumption of provitamin A carotenoids with dietary lipid would enhance conversion to vitamin A during absorption compared with the consumption of provitamin A carotenoids alone. Two separate sets of 12 healthy men and women were recruited for 2 randomized, 2-way crossover studies. One meal was served with fresh avocado (Persea americana Mill), cultivated variety Hass (delivering 23 g of lipid), and a second meal was served without avocado. In study 1, the source of provitamin A carotenoids was a tomato sauce made from a novel, high–β-carotene variety of tomatoes (delivering 33.7 mg of β-carotene). In study 2, the source of provitamin A carotenoids was raw carrots (delivering 27.3 mg of β-carotene and 18.7 mg of α-carotene). Postprandial blood samples were taken over 12 h, and provitamin A carotenoids and vitamin A were quantified in triglyceride-rich lipoprotein fractions to determine baseline-corrected area under the concentration-vs.-time curve. Consumption of lipid-rich avocado enhanced the absorption of β-carotene from study 1 by 2.4-fold (P < 0.0001). In study 2, the absorption of β-carotene and α-carotene increased by 6.6- and 4.8-fold, respectively (P < 0.0001 for both). Most notably, consumption of avocado enhanced the efficiency of conversion to vitamin A (as measured by retinyl esters) by 4.6-fold in study 1 (P < 0.0001) and 12.6-fold in study 2 (P = 0.0013). These observations highlight the importance of provitamin A carotenoid consumption with a lipid-rich food such as avocado for maximum absorption and conversion to vitamin A, especially in populations in which vitamin A deficiency is prevalent. This trial was registered at clinicaltrials.gov as NCT01432210.
Molecular Nutrition & Food Research | 2015
Daniel Arango; Mayra Diosa-Toro; Laura S. Rojas-Hernandez; Jessica L. Cooperstone; Steven J. Schwartz; Xiaokui Mo; Jinmai Jiang; Thomas D. Schmittgen; Andrea I. Doseff
SCOPE High incidence of inflammatory diseases afflicts the increasing aging-population infringing a great health burden. Dietary flavonoids, including the flavone apigenin, are emerging as important anti-inflammatory nutraceuticals due to their health benefits, lack of adverse effects and reduced costs. MicroRNAs (miRs) play a central role in inflammation by regulating gene expression, yet how dietary ingredients affect miRs is poorly understood. The aim of this study was to identify miRs involved in the anti-inflammatory activity of apigenin and apigenin-rich diets and determine their immune regulatory mechanisms in macrophages and in vivo. METHODS AND RESULTS A high-throughput quantitative reverse transcriptase PCR screen of 312 miRs in macrophages revealed that apigenin reduced LPS-induced miR-155 expression. Analyses of miR-155 precursor and primary transcript indicated that apigenin regulated miR-155 transcriptionally. Apigenin-reduced expression of miR-155 led to the increase of anti-inflammatory regulators forkhead box O3a and smooth-muscle-actin and MAD-related protein 2 in LPS-treated macrophages. In vivo, apigenin or a celery-based apigenin-rich diet reduced LPS-induced expression of miR-155 and decreased tumor necrosis factor α in lungs from LPS-treated mice. CONCLUSION These results demonstrate that apigenin and apigenin-rich diets exert effective anti-inflammatory activity in vivo by reducing LPS-induced expression of miR-155, thereby restoring immune balance.
Handbook on Natural Pigments in Food and Beverages#R##N#Industrial Applications for Improving Food Color | 2016
Jessica L. Cooperstone; Steven J. Schwartz
Carotenoids are lipophilic plant pigments that are present ubiquitously in nature. They are important secondary plant metabolites and are commonly used as natural pigments in foods. Additionally, their consumption has been associated with a decreased risk for a number of diseases, including cancers, cardiovascular disease, age-related macular degeneration, and photosensitivity associated with UV exposure. It is thought that carotenoids have important biological functions related to their provitamin A activity, antioxidant activity, ability to regulate gene transcription, enhancement of gap junction communication, phase II enzyme-inducing activity, and ability to enhance immune function. This chapter will briefly describe the proposed mechanisms by which carotenoids may exert such biological functions, as well as summarize the literature, exploring both epidemiological and intervention studies in humans on the relationship between carotenoids and the aforementioned chronic diseases.
Cancer Prevention Research | 2017
Hsueh Li Tan; Jennifer M. Thomas-Ahner; Nancy E. Moran; Jessica L. Cooperstone; John W. Erdman; Gregory S. Young; Steven K. Clinton
The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as β-carotene 9′,10′-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at 3 weeks of age, TRAMP:Bco2+/+ and TRAMP:Bco2−/− mice were fed either AIN-93G control, or semipurified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2−/− mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2+/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared with the control-fed mice. Although Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (Pinteraction = 0.0004 and 0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anticancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. Cancer Prev Res; 10(2); 161–9. ©2016 AACR.
Journal of Agricultural and Food Chemistry | 2017
Anna Westphal; Kenneth M. Riedl; Jessica L. Cooperstone; Shreya Kamat; V.M. Balasubramaniam; Steven J. Schwartz; Volker Böhm
Effects of high-pressure processing (HPP, 100-600 MPa for 3 min at 30 °C) on the glucosinolate content, conversion to isothiocyanates, and color changes during storage in fresh broccoli sprouts were investigated. A mild heat treatment (60 °C) and boiling (100 °C) were used as positive and negative controls, respectively. Glucosinolates were quantified using liquid chromatography-mass spectrometry, and isothiocyanates were quantified using high-performance liquid chromatography-photodiode array detection. A formation of isothiocyanates was observed in all high-pressure-treated sprouts. The highest degree of conversion (85%) was observed after the 600 MPa treatment. Increased isothiocyanate formation at 400-600 MPa suggests an inactivation of the epithiospecifier protein. During storage, color changed from green to brownish, reflected by increasing a* values and decreasing L* values. This effect was less pronounced for sprouts treated at 100 and 600 MPa, indicating an influence on the responsible enzymes. In summary, HPP had no negative effects on the glucosinolate-myrosinase system in broccoli sprouts.
Food Chemistry | 2016
Jessica L. Cooperstone; David M. Francis; Steven J. Schwartz
Tangerine tomatoes, unlike red tomatoes, accumulate cis-lycopenes instead of the all-trans isomer. cis-Lycopene is the predominating isomeric form of lycopene found in blood and tissues. Our objective was to understand how thermal processing and lipid concentration affect carotenoid isomerisation and degradation in tangerine tomatoes. We conducted duplicated factorial designed experiments producing tangerine tomato juice and sauce, varying both processing time and lipid concentration. Carotenoids were extracted and analysed using high-performance liquid chromatography with photodiode array detection. Phytoene, phytofluene, ζ-carotene, neurosporene, tetra-cis-lycopene, all-trans-lycopene and other-cis-lycopenes were quantified. Tetra-cis-lycopene decreased with increasing heating time and reached 80% of the original level in sauce after processing times of 180min. All-trans-lycopene and other-cis-lycopenes increased with longer processing times. Total carotenoids and total lycopene decreased with increased heating times while phytoene and phytofluene were unchanged. These data suggest limiting thermal processing of tangerine tomato products if delivery of tetra-cis-lycopene is desirable.
Scientific Reports | 2017
Jessica L. Cooperstone; Kathleen L. Tober; Kenneth M. Riedl; Matthew D. Teegarden; Morgan J. Cichon; David M. Francis; Steven J. Schwartz; Tatiana M. Oberyszyn
Prolonged tomato consumption can mitigate ultraviolet (UV) light induced sunburn via unknown mechanisms. Dietary carotenoids distributed to skin are hypothesized to protect skin against UV-induced damage, although other phytochemicals may play a role. We hypothesize that tomato consumption would protect against skin cancer. SKH-1 hairless and immunocompetent mice (n = 180) were fed AIN-93G or AIN-93G + 10% tangerine or red tomato powder for 35 weeks. From weeks 11–20, mice (n = 120) were exposed to 2240 J/m2 UV-B light, 3x/week, and tumors were tracked weekly. Control mice were fed the same diets but not exposed to UV. Tumor number was significantly lower in male mice consuming red tomato diets (1.73 ± 0.50, P = 0.015) or pooled tomato diets (2.03 ± 0.45, P = 0.017) compared to controls (4.04 ± 0.65). Carotenoid levels in plasma and skin were quantitated, with total lycopene higher in skin of tangerine fed animals despite a lower dose. Metabolomic analyses elucidated compounds derived from tomato glycoalkaloids (including tomatidine and hydroxylated-tomatidine) as significantly different metabolites in skin after tomato exposure. Here, we describe that tomato consumption can modulate risk for keratinocyte carcinomas; however, the role of the newly identified specific phytochemicals possibly responsible for this action require further investigation.
The American Journal of Clinical Nutrition | 2017
Jessica L. Cooperstone; Hilary Jane Goetz; Kenneth M. Riedl; Earl H. Harrison; Steven J. Schwartz; Rachel E. Kopec
Background: Asymmetric α-carotene, a provitamin A carotenoid, is cleaved to produce retinol (vitamin A) and α-retinol (with negligible vitamin A activity). The vitamin A activity of α-carotene-containing foods is likely overestimated because traditional analytic methods do not separate α-retinol derivatives from active retinol.Objective: This study aimed to accurately characterize intestinal α-carotene cleavage and its relative contribution to postprandial vitamin A in humans after consumption of raw carrots.Design: Healthy adults (n = 12) consumed a meal containing 300 g raw carrot (providing 27.3 mg β-carotene and 18.7 mg α-carotene). Triglyceride-rich lipoprotein fractions of plasma were isolated and extracted, and α-retinyl palmitate (αRP) and retinyl palmitate were measured over 12 h postprandially via high-performance liquid chromatography-tandem mass spectrometry. The complete profile of all α-retinyl esters and retinyl esters was measured at 6 h, and total absorption of α- and β-carotene was calculated.Results: αRP was identified and quantified in every subject. No difference in preference for absorption of β- over α-carotene was observed (adjusting for dose, 28% higher, P = 0.103). After absorption, β-carotene trended toward preferential cleavage compared with α-carotene (22% higher, P = 0.084). A large range of provitamin A carotenoid conversion efficiencies was observed, with α-carotene contributing 12-35% of newly converted vitamin A (predicted contribution = 25.5%). In all subjects, a majority of α-retinol was esterified to palmitic acid (as compared with other fatty acids).Conclusions: α-Retinol is esterified in the enterocyte and transported in the blood analogous to retinol. The percentage of absorption of α-carotene from raw carrots was not significantly different from β-carotene when adjusting for dose, although a trend toward higher cleavage of β-carotene was observed. The results demonstrate large interindividual variability in α-carotene conversion. The contribution of newly absorbed α-carotene to postprandial vitamin A should not be estimated but should be measured directly to accurately assess the vitamin A capacity of α-carotene-containing foods. This trial was registered at clinicaltrials.gov as NCT01432210.
Journal of Chromatography B | 2016
Hilary Jane Goetz; Rachel E. Kopec; Kenneth M. Riedl; Jessica L. Cooperstone; Sureshbabu Narayanasamy; Robert W. Curley; Steven J. Schwartz
Enzymatic cleavage of the nonsymmetric provitamin A carotenoid α-carotene results in one molecule of retinal (vitamin A), and one molecule of α-retinal, a biologically inactive analog of true vitamin A. Due to structural similarities, α-retinyl esters and vitamin A esters typically coelute, resulting in the overestimation of vitamin A originating from α-carotene. Herein, we present a set of tools to identify and separate α-retinol products from vitamin A. α-Retinyl palmitate (αRP) standard was synthesized from α-ionone following a Wittig-Horner approach. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method employing a C30 column was then developed to separate the species. Authentic standards of retinyl esters and the synthesized α-RP confirmed respective identities, while other α-retinyl esters (i.e. myristate, linoleate, oleate, and stearate) were evidenced by their pseudomolecular ions observed in electrospray ionization (ESI) mode, fragmentation, and elution order. For quantitation, an atmospheric pressure chemical ionization (APCI) source operated in positive ion mode was used, and retinol, the predominant in-source parent ion was selected and fragmented. The application of this method to a chylomicron-rich fraction of human plasma is demonstrated. This method can be used to better determine the quantity of vitamin A derived from foods containing α-carotene.