Kenneth M. Riedl
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth M. Riedl.
Pharmacological Research | 2011
John D. Clarke; Anna Hsu; Kenneth M. Riedl; Deborah Bella; Steven J. Schwartz; Jan F. Stevens; Emily Ho
Broccoli consumption may reduce the risk of various cancers and many broccoli supplements are now available. The bioavailability and excretion of the mercapturic acid pathway metabolites isothiocyanates after human consumption of broccoli supplements has not been tested. Two important isothiocyanates from broccoli are sulforaphane and erucin. We employed a cross-over study design in which 12 subjects consumed 40 g of fresh broccoli sprouts followed by a 1 month washout period and then the same 12 subjects consumed 6 pills of a broccoli supplement. As negative controls for isothiocyanate consumption four additional subjects consumed alfalfa sprouts during the first phase and placebo pills during the second. Blood and urine samples were collected for 48h during each phase and analyzed for sulforaphane and erucin metabolites using LC-MS/MS. The bioavailability of sulforaphane and erucin is dramatically lower when subjects consume broccoli supplements compared to fresh broccoli sprouts. The peaks in plasma concentrations and urinary excretion were also delayed when subjects consumed the broccoli supplement. GSTP1 polymorphisms did not affect the metabolism or excretion of sulforaphane or erucin. Sulforaphane and erucin are able to interconvert in vivo and this interconversion is consistent within each subject but variable between subjects. This study confirms that consumption of broccoli supplements devoid of myrosinase activity does not produce equivalent plasma concentrations of the bioactive isothiocyanate metabolites compared to broccoli sprouts. This has implications for people who consume the recommended serving size (1 pill) of a broccoli supplement and believe they are getting equivalent doses of isothiocyanates.
Journal of Chemical Ecology | 2007
Alieta Eyles; William P. Jones; Kenneth M. Riedl; Don Cipollini; Steven J. Schwartz; Kenneth K. Chan; Daniel A. Herms; Pierluigi Bonello
Recent studies have investigated interspecific variation in resistance of ash (Fraxinus spp.) to the exotic wood-boring beetle, emerald ash borer (EAB, Agrilus planipennis). Manchurian ash (Fraxinus mandshurica) is an Asian species that has coevolved with EAB. It experiences little EAB-induced mortality compared to North American ashes. Host phloem chemistry, both constitutive and induced, might partly explain this interspecific variation in resistance. We analyzed the constitutive phloem chemistry of three ash species: Manchurian ash and North American white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash. Analysis of the crude phloem extracts revealed the presence of an array of phenolic compounds including hydroxycoumarins, a monolignol, lignans, phenylethanoids, and secoiridoids. Both qualitative and quantitative differences were observed among the three ash species. Hydroxycoumarins and the phenylethanoids, calceloariosides A and B, were present only in the phloem of Manchurian ash and might represent a mechanism of resistance against EAB.
Clinical Cancer Research | 2011
Li-Shu Wang; Mark W. Arnold; Yi-Wen Huang; Christine Sardo; Claire Seguin; Edward W. Martin; Tim H M Huang; Kenneth M. Riedl; Steven J. Schwartz; Wendy L. Frankel; Dennis K. Pearl; Yiqing Xu; John Winston; Guang Yu Yang; Gary D. Stoner
Purpose: This study evaluated the effects of black raspberries (BRBs) on biomarkers of tumor development in the human colon and rectum including methylation of relevant tumor suppressor genes, cell proliferation, apoptosis, angiogenesis, and expression of Wnt pathway genes. Experimental Design: Biopsies of adjacent normal tissues and colorectal adenocarcinomas were taken from 20 patients before and after oral consumption of BRB powder (60 g/d) for 1–9 weeks. Methylation status of promoter regions of five tumor suppressor genes was quantified. Protein expression of DNA methyltransferase 1 (DNMT1) and genes associated with cell proliferation, apoptosis, angiogenesis, and Wnt signaling were measured. Results: The methylation of three Wnt inhibitors, SFRP2, SFRP5, and WIF1, upstream genes in Wnt pathway, and PAX6a, a developmental regulator, was modulated in a protective direction by BRBs in normal tissues and in colorectal tumors only in patients who received BRB treatment for an average of 4 weeks, but not in all 20 patients with 1–9 weeks of BRB treatment. This was associated with decreased expression of DNMT1. BRBs modulated expression of genes associated with Wnt pathway, proliferation, apoptosis, and angiogenesis in a protective direction. Conclusions: These data provide evidence of the ability of BRBs to demethylate tumor suppressor genes and to modulate other biomarkers of tumor development in the human colon and rectum. While demethylation of genes did not occur in colorectal tissues from all treated patients, the positive results with the secondary endpoints suggest that additional studies of BRBs for the prevention of colorectal cancer in humans now appear warranted. Clin Cancer Res; 17(3); 598–610. ©2010 AACR.
Molecular Plant | 2010
Lucille Pourcel; Niloufer G. Irani; Yuhua Lu; Kenneth M. Riedl; Steve Schwartz; Erich Grotewold
Anthocyanins are flavonoid pigments that accumulate in the large central vacuole of most plants. Inside the vacuole, anthocyanins can be found uniformly distributed or as part of sub-vacuolar pigment bodies, the Anthocyanic Vacuolar Inclusions (AVIs). Using Arabidopsis seedlings grown under anthocyanin-inductive conditions as a model to understand how AVIs are formed, we show here that the accumulation of AVIs strongly correlates with the formation of cyanidin 3-glucoside (C3G) and derivatives. Arabidopsis mutants that fail to glycosylate anthocyanidins at the 5-O position (5gt mutant) accumulate AVIs in almost every epidermal cell of the cotyledons, as compared to wild-type seedlings, where only a small fraction of the cells show AVIs. A similar phenomenon is observed when seedlings are treated with vanadate. Highlighting a role for autophagy in the formation of the AVIs, we show that various mutants that interfere with the autophagic process (atg mutants) display lower numbers of AVIs, in addition to a reduced accumulation of anthocyanins. Interestingly, vanadate increases the numbers of AVIs in the atg mutants, suggesting that several pathways might participate in AVI formation. Taken together, our results suggest novel mechanisms for the formation of sub-vacuolar compartments capable of accumulating anthocyanin pigments.
Journal of Biological Chemistry | 2012
Abdulkerim Eroglu; Damian P. Hruszkewycz; Carlo dela Seña; Sureshbabu Narayanasamy; Kenneth M. Riedl; Rachel E. Kopec; Steven J. Schwartz; Robert W. Curley; Earl H. Harrison
Background: Dietary β-carotene can be cleaved centrally to vitamin A, an agonist of retinoic acid receptors, or eccentrically to yield β-apocarotenoids. Results: β-Apocarotenoids antagonize retinoic acid receptors by binding directly to the receptors. Conclusion: β-Apocarotenoids function as naturally occurring retinoid receptor antagonists. Significance: The antagonism of retinoid signaling by these metabolites may explain the negative health effects of large doses of β-carotene. β-Carotene is the major dietary source of provitamin A. Central cleavage of β-carotene catalyzed by β-carotene oxygenase 1 yields two molecules of retinaldehyde. Subsequent oxidation produces all-trans-retinoic acid (ATRA), which functions as a ligand for a family of nuclear transcription factors, the retinoic acid receptors (RARs). Eccentric cleavage of β-carotene at non-central double bonds is catalyzed by other enzymes and can also occur non-enzymatically. The products of these reactions are β-apocarotenals and β-apocarotenones, whose biological functions in mammals are unknown. We used reporter gene assays to show that none of the β-apocarotenoids significantly activated RARs. Importantly, however, β-apo-14′-carotenal, β-apo-14′-carotenoic acid, and β-apo-13-carotenone antagonized ATRA-induced transactivation of RARs. Competitive radioligand binding assays demonstrated that these putative RAR antagonists compete directly with retinoic acid for high affinity binding to purified receptors. Molecular modeling studies confirmed that β-apo-13-carotenone can interact directly with the ligand binding site of the retinoid receptors. β-Apo-13-carotenone and the β-apo-14′-carotenoids inhibited ATRA-induced expression of retinoid responsive genes in Hep G2 cells. Finally, we developed an LC/MS method and found 3–5 nm β-apo-13-carotenone was present in human plasma. These findings suggest that β-apocarotenoids function as naturally occurring retinoid antagonists. The antagonism of retinoid signaling by these metabolites may have implications for the activities of dietary β-carotene as a provitamin A and as a modulator of risk for cardiovascular disease and cancer.
Journal of Food Science | 2009
G.A. Garzón; Kenneth M. Riedl; Steven J. Schwartz
Anthocyanins, total phenolic content, ascorbic acid content, and the antioxidant activity were determined in extracts of Andes berry fruit (Rubus glaucus Benth). Anthocyanis (ACNs) were isolated and characterized by means of high-performance liquid chromatography (HPLC) with photodiode array detection and electro spray ionization/mass spectrometry (PDA-ESI/MS/MS) analysis. The anthocyanin (ACN) content was 45 mg/100 g FW. The isolated anthocyanins were characterized as cyanidin 3-sambubioside, cyanidin 3-glucoside, cyanidin 3-xylorutinoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, and pelargonidin 3-rutinoside. The ascorbic acid content was 10.1 mg/100 g FW. The total phenolic content as determined by the Folin-Ciocalteau method was 294 mg GAE/100 g FW while the antioxidant activity as measured by ABTS(.) (+) radical scavenging capacity and ferric reducing antioxidant power (FRAP) was 2.01 and 4.50 mmol TE/100 g FW or 8.22 mmoles ferric iron reduced/100 g FW, respectively. The high phenolic content and antioxidant capacity of Andes berry suggest that this fruit could be a rich source of natural pigments, nutraceuticals, and natural antioxidants.
Nutrition and Cancer | 2009
Nancy Zikri; Kenneth M. Riedl; Li-Shu Wang; John F. Lechner; Steven J. Schwartz; Gary D. Stoner
We have shown that a diet containing freeze-dried black raspberries (BRB) inhibits the development of chemically induced cancer in the rat esophagus. To provide insights into possible mechanisms by which BRB inhibit esophageal carcinogenesis, we evaluated an ethanol (EtOH) extract of BRB, and two component anthocyanins (cyanidin-3-O-glucoside and cyanidin-3-O−rutinoside) in BRB, for their effects on growth, apoptosis, and gene expression in rat esophageal epithelial cell lines. The EtOH extract and both anthocyanins selectively caused significant growth inhibition and induction of apoptosis in a highly tumorigenic cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149). The uptake of anthocyanins from the EtOH extract into RE-149 DHD cells far exceeded their uptake into RE-149 cells, which may have accounted for the selective effects of the extract on growth and apoptosis of RE-149 DHD cells. The growth inhibitory and proapoptotic effects were enhanced by the daily addition of the EtOH extract and the anthocyanins to the medium. Interestingly, the EtOH extract did not alter cyclooxygenase-2 (COX-2) and nitric oxide synthase (i-NOS) expression in RE-149 DHD cells, whereas both anthocyanins downregulated the expressions of these genes. This differential effect may have been related to the relative amounts of anthocyanins in the extract vs. when they were added individually to the medium. We conclude that the selective effects of the EtOH extract on growth and apoptosis of highly tumorigenic rat esophageal epithelial cells in vitro may be due to preferential uptake and retention of its component anthocyanins, and this may also be responsible for the greater inhibitory effects of freeze-dried whole berries on tumor cells in vivo.
Molecular Nutrition & Food Research | 2015
Jessica L. Cooperstone; Robin A. Ralston; Kenneth M. Riedl; Thomas C. Haufe; Ralf M. Schweiggert; Samantha A. King; Cynthia Timmers; David M. Francis; Gregory B. Lesinski; Steven K. Clinton; Steven J. Schwartz
SCOPE Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. METHODS AND RESULTS Following a randomized cross-over design, subjects (n = 11, 6 M/5 F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 h and triglyceride-rich lipoprotein fractions of plasma were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (p < 0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. CONCLUSION Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods.
Journal of Biological Chemistry | 2013
Carlo dela Seña; Sureshbabu Narayanasamy; Kenneth M. Riedl; Robert W. Curley; Steven J. Schwartz; Earl H. Harrison
Background: The human enzyme β-carotene 15,15′-oxygenase (BCO1) produces vitamin A from carotenoids in food. Results: BCO1 catalyzes the oxidative cleavage of the 15–15′ double bond of major dietary provitamin A carotenoids, β-apocarotenals, and lycopene. Conclusion: BCO1 reacts only with carotenoids and apocarotenoids that yield retinal or acycloretinal. Significance: Elucidating the substrate specificity of BCO1 is crucial for understanding how humans metabolize carotenoids. Humans cannot synthesize vitamin A and thus must obtain it from their diet. β-Carotene 15,15′-oxygenase (BCO1) catalyzes the oxidative cleavage of provitamin A carotenoids at the central 15–15′ double bond to yield retinal (vitamin A). In this work, we quantitatively describe the substrate specificity of purified recombinant human BCO1 in terms of catalytic efficiency values (kcat/Km). The full-length open reading frame of human BCO1 was cloned into the pET-28b expression vector with a C-terminal polyhistidine tag, and the protein was expressed in the Escherichia coli strain BL21-Gold(DE3). The enzyme was purified using cobalt ion affinity chromatography. The purified enzyme preparation catalyzed the oxidative cleavage of β-carotene with a Vmax = 197.2 nmol retinal/mg BCO1 × h, Km = 17.2 μm and catalytic efficiency kcat/Km = 6098 m−1 min−1. The enzyme also catalyzed the oxidative cleavage of α-carotene, β-cryptoxanthin, and β-apo-8′-carotenal to yield retinal. The catalytic efficiency values of these substrates are lower than that of β-carotene. Surprisingly, BCO1 catalyzed the oxidative cleavage of lycopene to yield acycloretinal with a catalytic efficiency similar to that of β-carotene. The shorter β-apocarotenals (β-apo-10′-carotenal, β-apo-12′-carotenal, β-apo-14′-carotenal) do not show Michaelis-Menten behavior under the conditions tested. We did not detect any activity with lutein, zeaxanthin, and 9-cis-β-carotene. Our results show that BCO1 favors full-length provitamin A carotenoids as substrates, with the notable exception of lycopene. Lycopene has previously been reported to be unreactive with BCO1, and our findings warrant a fresh look at acycloretinal and its alcohol and acid forms as metabolites of lycopene in future studies.
Molecular Nutrition & Food Research | 2012
Gregory L. Hostetler; Kenneth M. Riedl; Horacio Cardenas; Mayra Diosa-Toro; Daniel Arango; Steven J. Schwartz; Andrea I. Doseff
SCOPE Flavones have reported anti-inflammatory activities, but the ability of flavone-rich foods to reduce inflammation is unclear. Here, we report the effect of flavone glycosylation in the regulation of inflammatory mediators in vitro and the absorption of dietary flavones in vivo. METHODS AND RESULTS The anti-inflammatory activities of celery extracts, some rich in flavone aglycones and others rich in flavone glycosides, were tested on the inflammatory mediators tumor necrosis factor α (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lipopolysaccharide-stimulated macrophages. Pure flavone aglycones and aglycone-rich extracts effectively reduced TNF-α production and inhibited the transcriptional activity of NF-κB, while glycoside-rich extracts showed no significant effects. Deglycosylation of flavones increased cellular uptake and cytoplasmic localization as shown by high-performance liquid chromatography (HPLC) and microscopy using the flavonoid fluorescent dye diphenylboric acid 2-aminoethyl ester (DPBA). Celery diets with different glycoside or aglycone contents were formulated and absorption was evaluated in mice fed with 5 or 10% celery diets. Relative absorption in vivo was significantly higher in mice fed with aglycone-rich diets as determined by HPLC-MS/MS (where MS/MS is tandem mass spectrometry). CONCLUSION These results demonstrate that deglycosylation increases absorption of dietary flavones in vivo and modulates inflammation by reducing TNF-α and NF-κB, suggesting the potential use of functional foods rich in flavones for the treatment and prevention of inflammatory diseases.