Jessica L. Petersen
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica L. Petersen.
Nature | 2012
L. Andersson; Martin Larhammar; Fatima Memic; Hanna Wootz; Doreen Schwochow; Carl-Johan Rubin; Kalicharan Patra; Thorvaldur Arnason; Lisbeth Wellbring; Göran Hjälm; Freyja Imsland; Jessica L. Petersen; Molly E. McCue; James R. Mickelson; Gus Cothran; Nadav Ahituv; L. Roepstorff; Sofia Mikko; Anna Vallstedt; Gabriella Lindgren; Leif Andersson; Klas Kullander
Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
PLOS Genetics | 2012
Molly E. McCue; Danika L. Bannasch; Jessica L. Petersen; Jessica Gurr; E. Bailey; M. M. Binns; Ottmar Distl; Gérard Guérin; Telhisa Hasegawa; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; M. Cecilia T. Penedo; Knut H. Røed; Oliver A. Ryder; June Swinburne; Teruaki Tozaki; Stephanie J. Valberg; Mark Vaudin; Kerstin Lindblad-Toh; Claire M. Wade; James R. Mickelson
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalskis Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.
PLOS Genetics | 2013
Jessica L. Petersen; James R. Mickelson; Aaron Rendahl; Stephanie J. Valberg; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Stefano Capomaccio; Katia Cappelli; E. Gus Cothran; Ottmar Distl; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr
Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.
PLOS ONE | 2013
Jessica L. Petersen; James R. Mickelson; E. Gus Cothran; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Ottmar Distl; Michela Felicetti; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr; M. Cecilia T. Penedo; Richard J. Piercy; Marja Raekallio
Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.
Heredity | 2011
Melinda R. Baerwald; Jessica L. Petersen; Ronald P. Hedrick; G J Schisler; Bernie May
Whirling disease, caused by the pathogen Myxobolus cerebralis, leads to skeletal deformation, neurological impairment and under certain conditions, mortality of juvenile salmonid fishes. The disease has impacted the propagation and survival of many salmonid species over six continents, with particularly negative consequences for rainbow trout. To assess the genetic basis of whirling disease resistance in rainbow trout, genome-wide mapping was initiated using a large outbred F2 rainbow trout family (n=480) and results were confirmed in three additional outbred F2 families (n=96 per family). A single quantitative trait locus (QTL) region on chromosome Omy9 was identified in the large mapping family and confirmed in all additional families. This region explains 50–86% of the phenotypic variance across families. Therefore, these data establish that a single QTL region is capable of explaining a large percentage of the phenotypic variance contributing to whirling disease resistance. This is the first genetic region discovered that contributes directly to the whirling disease phenotype and the finding moves the field closer to a mechanistic understanding of resistance to this important disease of salmonid fish.
North American Journal of Fisheries Management | 2010
James T. Lamer; Chad R. Dolan; Jessica L. Petersen; John H. Chick; John M. Epifanio
Abstract Asian carps are classified as either bighead carp Hypophthalmichthys nobilis or silver carp H. molitrix by multiple presumptively diagnostic morphological characteristics; however, hybrids pose a dilemma. Fish sharing the morphological characteristics of both species were observed in an Illinois River backwater (Calhoun County, Illinois) approximately 5 mi (8 km) upriver from the confluence with the Mississippi River as well as in two locations in Pool 26 of the Mississippi River (Madison County, Illinois). Biopsied tissues from individuals exhibiting mixed morphological features were analyzed at four diagnostic allozyme loci (ADH-1*, sMDH-A*, CK-A*, and sSOD-1*) via starch gel electrophoresis. This comparison revealed a high percentage of hybridization (22.5%) from an indiscriminate sample of 120 fish. Moreover, an unexpected percentage (12.5%) of individuals identified in the wild as either parental bighead carp or silver carp by gill raker morphology were genetically identified as hybrids. Fin...
Animal Genetics | 2014
Jessica L. Petersen; Stephanie J. Valberg; James R. Mickelson; Molly E. McCue
Two variants in the equine myostatin gene (MSTN), including a T/C SNP in the first intron and a 227-bp SINE insertion in the promoter, are associated with muscle fiber type proportions in the Quarter Horse (QH) and with the prediction of race distance propensity in the Thoroughbred (TB). Genotypes from these loci, along with 18 additional variants surrounding MSTN, were examined in 301 horses of 14 breeds to evaluate haplotype relationships and diversity. The C allele of intron 1 was found in 12 of 14 breeds at a frequency of 0.27; the SINE was observed in five breeds, but common in only the TB and QH (0.73 and 0.48 respectively). Haplotype data suggest the SINE insertion is contemporary to and arose upon a haplotype containing the intron 1 C allele. Gluteal muscle biopsies of TBs showed a significant association of the intron 1 C allele and SINE with a higher proportion of Type 2B and lower proportion of Type 1 fibers. However, in the Belgian horse, in which the SINE is not present, the intron 1 SNP was not associated with fiber type proportions, and evaluation of fiber type proportions across the Belgian, TB and QH breeds shows the significant effect of breed on fiber type proportions is negated when evaluating horses without the SINE variant. These data suggest the SINE, rather than the intron 1 SNP, is driving the observed muscle fiber type characteristics and is the variant targeted by selection for short-distance racing.
Journal of Heredity | 2008
Jessica L. Petersen; Ana M. Ibarra; José Ramírez; Bernie May
The Pacific lion-paw scallop is commonly propagated for aquaculture by induced mass spawns of few individuals. Parentage of a mass spawn of this species has not been evaluated nor has the maternal and paternal contribution of each of these functional hermaphrodites to the progeny. Genotypes of 6 spawners and 374 resulting progeny at 6 microsatellite loci were coupled with mitochondrial DNA sequencing to assign maternal and paternal parentage. After the identification of a high proportion of null alleles (9.7%), microsatellite data revealed that 51.7% of the progenies were full siblings, with a significant, unequal contribution of the 6 spawners to the progeny. Three progenies were the result of self-fertilization. All spawners contributed paternally (though unequally); however, 2 spawners were the maternal parents of all but 7 progenies resulting in a variance effective population size of 3.52. DNA sequencing confirmed 4 microsatellite mutations within 4476 alleles scored, all in the paternal germ line. With minor exception, the loci conformed to Mendelian rules of segregation when null alleles were accounted for, and 2 loci were found to be linked. These results lend insight to the genetic composition of induced mass spawns and provide a basis for the development of more effective spawning techniques.
Animal Genetics | 2015
Gota Morota; Francisco Peñagaricano; Jessica L. Petersen; Daniel C. Ciobanu; K. Tsuyuzaki; I. Nikaido
Summary An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome‐wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.
Marine Biology | 2010
Jessica L. Petersen; Ana M. Ibarra; Bernie May
Pacific lion-paw scallops were collected from natural aggregations in Laguna Ojo de Liebre (Pacific Ocean), the Gulf of California, and from aquaculture facilities for genetic diversity analyses. Mitochondrial DNA sequencing uncovered two highly supported clades separated by 2.5% divergence. Data from ten microsatellite markers suggest individuals from these mitogroups are introgressed, raising questions about the mitotype origin. Some evidence suggests gene flow between La Paz and Ojo de Liebre; otherwise the Gulf of California and Ojo de Liebre are acting as two distinct populations. It is unclear whether translocations between sites have influenced the observed genetic structure or whether gene flow has been facilitated by past geologic events. Finally, scallops spawned for aquaculture are unique from the wild and have significantly less diversity. These results warrant the attention of managers and producers who should work to monitor and conserve genetic diversity in both wild and aquaculture populations.