Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Molly E. McCue is active.

Publication


Featured researches published by Molly E. McCue.


Nature | 2012

Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice

L. Andersson; Martin Larhammar; Fatima Memic; Hanna Wootz; Doreen Schwochow; Carl-Johan Rubin; Kalicharan Patra; Thorvaldur Arnason; Lisbeth Wellbring; Göran Hjälm; Freyja Imsland; Jessica L. Petersen; Molly E. McCue; James R. Mickelson; Gus Cothran; Nadav Ahituv; L. Roepstorff; Sofia Mikko; Anna Vallstedt; Gabriella Lindgren; Leif Andersson; Klas Kullander

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


PLOS Genetics | 2012

A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies

Molly E. McCue; Danika L. Bannasch; Jessica L. Petersen; Jessica Gurr; E. Bailey; M. M. Binns; Ottmar Distl; Gérard Guérin; Telhisa Hasegawa; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; M. Cecilia T. Penedo; Knut H. Røed; Oliver A. Ryder; June Swinburne; Teruaki Tozaki; Stephanie J. Valberg; Mark Vaudin; Kerstin Lindblad-Toh; Claire M. Wade; James R. Mickelson

An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalskis Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Genomics | 2008

Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis

Molly E. McCue; Stephanie J. Valberg; Michael B. Miller; Claire M. Wade; Salvatore DiMauro; Hasan O. Akman; James R. Mickelson

Polysaccharide storage myopathy (PSSM) is a novel glycogenosis in horses characterized by abnormal glycogen accumulation in skeletal muscle and muscle damage with exertion. It is unlike glycogen storage diseases resulting from known defects in glycogenolysis, glycolysis, and glycogen synthesis that have been described in humans and domestic animals. A genome-wide association identified GYS1, encoding skeletal muscle glycogen synthase (GS), as a candidate gene for PSSM. DNA sequence analysis revealed a mutation resulting in an arginine-to-histidine substitution in a highly conserved region of GS. Functional analysis demonstrated an elevated GS activity in PSSM horses, and haplotype analysis and allele age estimation demonstrated that this mutation is identical by descent among horse breeds. This is the first report of a gain-of-function mutation in GYS1 resulting in a glycogenosis.


PLOS Genetics | 2013

Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

Jessica L. Petersen; James R. Mickelson; Aaron Rendahl; Stephanie J. Valberg; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Stefano Capomaccio; Katia Cappelli; E. Gus Cothran; Ottmar Distl; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Nature Protocols | 2014

Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX

Mikkel Schubert; Luca Ermini; Clio Der Sarkissian; Hákon Jónsson; Aurélien Ginolhac; Robert Schaefer; Michael Martin; Ruth Fernández; Martin Kircher; Molly E. McCue; Ludovic Orlando

Next-generation sequencing technologies have revolutionized the field of paleogenomics, allowing the reconstruction of complete ancient genomes and their comparison with modern references. However, this requires the processing of vast amounts of data and involves a large number of steps that use a variety of computational tools. Here we present PALEOMIX (http://geogenetics.ku.dk/publications/paleomix), a flexible and user-friendly pipeline applicable to both modern and ancient genomes, which largely automates the in silico analyses behind whole-genome resequencing. Starting with next-generation sequencing reads, PALEOMIX carries out adapter removal, mapping against reference genomes, PCR duplicate removal, characterization of and compensation for postmortem damage, SNP calling and maximum-likelihood phylogenomic inference, and it profiles the metagenomic contents of the samples. As such, PALEOMIX allows for a series of potential applications in paleogenomics, comparative genomics and metagenomics. Applying the PALEOMIX pipeline to the three ancient and seven modern Phytophthora infestans genomes as described here takes 5 d using a 16-core server.


PLOS ONE | 2013

Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data

Jessica L. Petersen; James R. Mickelson; E. Gus Cothran; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Ottmar Distl; Michela Felicetti; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr; M. Cecilia T. Penedo; Richard J. Piercy; Marja Raekallio

Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.


Javma-journal of The American Veterinary Medical Association | 2009

Evaluation of allele frequencies of inherited disease genes in subgroups of American Quarter Horses

Robert C. Tryon; M. Cecilia T. Penedo; Molly E. McCue; Stephanie J. Valberg; James R. Mickelson; Thomas R. Famula; Michelle L. Wagner; Mark W. Jackson; Michael J. Hamilton; Sabine Nooteboom; Danika L. Bannasch

OBJECTIVE To estimate allele frequencies of the hyperkalaemic periodic paralysis (HYPP), lethal white foal syndrome (LWFS), glycogen branching enzyme deficiency (GBED), hereditary equine regional dermal asthenia (HERDA), and type 1 polysaccharide storage myopathy (PSSM) genes in elite performance subgroups of American Quarter Horses (AQHs). DESIGN Prospective genetic survey. ANIMALS 651 elite performance AQHs, 200 control AQHs, and 180 control American Paint Horses (APHs). PROCEDURES Elite performance AQHs successful in 7 competitive disciplines (barrel racing, cutting, halter, racing, reining, western pleasure, and working cow horse) were geno- typed for 5 disease-causing alleles. Age-matched control AQHs and APHs were used to establish comparative whole-breed estimates of allele frequencies. RESULTS Highest allele frequencies among control AQHs were for type 1 PSSM (0.055) and GBED (0.054), whereas HERDA (0.021) and HYPP (0.008) were less prevalent. Control APHs uniquely harbored LWFS (0.107) and had high prevalence of HYPP (0.025), relative to AQHs. Halter horse subgroups had significantly greater allele frequencies for HYPP (0.299) and PSSM (0.155). Glycogen branching enzyme deficiency, HERDA, and PSSM were found broadly throughout subgroups; cutting subgroups were distinct for HERDA (0.142), and western pleasure subgroups were distinct for GBED (0.132). Racing and barrel racing subgroups had the lowest frequencies of the 5 disease genes. CONCLUSIONS AND CLINICAL RELEVANCE Accurate estimates of disease-causing alleles in AQHs and APHs may guide use of diagnostic genetic testing, aid management of genetic diseases, and help minimize production of affected foals.


Current Biology | 2015

Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse

Clio Der Sarkissian; Luca Ermini; Mikkel Schubert; Melinda A. Yang; Pablo Librado; Matteo Fumagalli; Hákon Jónsson; Gila Kahila Bar-Gal; Anders Albrechtsen; Filipe G. Vieira; Bent Petersen; Aurélien Ginolhac; Andaine Seguin-Orlando; Kim Magnussen; Antoine Fages; Cristina Gamba; Belen Lorente-Galdos; Sagi Polani; Cynthia C. Steiner; Markus Neuditschko; Vidhya Jagannathan; Claudia Feh; Charles L. Greenblatt; Arne Ludwig; Natalia I. Abramson; Waltraut Zimmermann; Renate Schafberg; Alexei Tikhonov; Thomas Sicheritz-Pontén; Tomas Marques-Bonet

Przewalskis horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but survived in captivity, thanks to major conservation efforts. The current population is still endangered, with just 2,109 individuals, one-quarter of which are in Chinese and Mongolian reintroduction reserves [1]. These horses descend from a founding population of 12 wild-caught PHs and possibly up to four domesticated individuals [2-4]. With a stocky build, an erect mane, and stripped and short legs, they are phenotypically and behaviorally distinct from domesticated horses (DHs, Equus caballus). Here, we sequenced the complete genomes of 11 PHs, representing all founding lineages, and five historical specimens dated to 1878-1929 CE, including the Holotype. These were compared to the hitherto-most-extensive genome dataset characterized for horses, comprising 21 new genomes. We found that loci showing the most genetic differentiation with DHs were enriched in genes involved in metabolism, cardiac disorders, muscle contraction, reproduction, behavior, and signaling pathways. We also show that DH and PH populations split ∼45,000 years ago and have remained connected by gene-flow thereafter. Finally, we monitor the genomic impact of ∼110 years of captivity, revealing reduced heterozygosity, increased inbreeding, and variable introgression of domestic alleles, ranging from non-detectable to as much as 31.1%. This, together with the identification of ancestry informative markers and corrections to the International Studbook, establishes a framework for evaluating the persistence of genetic variation in future reintroduced populations.


Journal of Veterinary Internal Medicine | 2008

Glycogen Synthase 1 (GYS1) Mutation in Diverse Breeds with Polysaccharide Storage Myopathy

Molly E. McCue; Stephanie J. Valberg; M. Lucio; James R. Mickelson

BACKGROUND A missense mutation in the GYS1 gene was recently described in horses with polysaccharide storage myopathy (PSSM). OBJECTIVES The first objective was to determine the prevalence of the GYS1 mutation in horses with PSSM from diverse breeds. The second objective was to determine if the prevalence of the GYS1 mutation differed between horses diagnosed with PSSM based on grade 1 (typically amylase-sensitive) or grade 2 (typically amylase-resistant) polysaccharide. ANIMALS Eight hundred and thirty-one PSSM horses from 36 breeds. PROCEDURES Horses with PSSM diagnosed by histopathology of skeletal muscle biopsy samples were identified from the Neuromuscular Disease Laboratory database. Eight hundred and thirty-one cases had blood or tissue that was available for DNA isolation; these 831 cases were genotyped for the GYS1 mutation by restriction fragment length polymorphism. RESULTS The PSSM mutation was identified in horses from 17 different breeds. The prevalence of the GYS1 mutation in PSSM horses was high in Draft- (87%) and Quarter Horse-related breeds (72%) and lower in Warmbloods (18%) and other light horse breeds (24%), when diagnosis was based on grade 2 diagnostic criteria. Overall, the PSSM mutation was present in 16% of grade 1 and 70% of grade 2 PSSM horses. CONCLUSIONS AND CLINICAL IMPORTANCE GYS1 mutation causes PSSM in diverse breeds and is the predominant form of PSSM in Draft- and Quarter Horse-related breeds. False-positive diagnosis, as well as the possibility of a second glycogenosis in horses with neuromuscular disease (type 2 PSSM), might explain the absence of the GYS1 mutation in horses diagnosed with excessive glycogen accumulation in muscle.


Equine Veterinary Journal | 2009

A glycogen synthase 1 mutation associated with equine polysaccharide storage myopathy and exertional rhabdomyolysis occurs in a variety of UK breeds

Rachael Stanley; Molly E. McCue; Stephanie J. Valberg; James R. Mickelson; I. G. Mayhew; C. M. McGowan; Janet C. Patterson-Kane; Richard J. Piercy

REASONS FOR PERFORMING STUDY A glycogen synthase (GYS1) mutation has been described in horses with histopathological evidence of polysaccharide storage myopathy (PSSM) in the USA. It is unknown whether the same mutation is present in horses from the UK. OBJECTIVES To determine whether the GYS1 mutation occurs in UK horses with histopathological evidence of PSSM and exertional rhabdomyolysis. HYPOTHESIS The R309H GYS1 mutation is present in a variety of UK horse breeds and that the mutation is commonly associated with exertional rhabdomyolysis. METHODS DNA was extracted from 47 muscle or blood samples from UK horses with histories of exertional rhabdomyolysis in which muscle biopsy diagnosis had been pursued. The proportions of GYS1 mutation positive cases were compared among histopathologically defined groups. In addition, breeds that carried the GYS1 mutation were identified from a total of 37 grade 2 (amylase-resistant) PSSM cases. RESULTS Of 47 horses with exertional rhabdomyolysis in which a muscle biopsy diagnosis was pursued, 10 (21%) carried the GYS1 mutation. The mutation was only found in horses with grade 2 PSSM (i.e. not in horses with normal, idiopathic myopathy or grade 1 PSSM biopsy samples). In total, the GYS1 mutation was found in 24/37 (65%) of grade 2 PSSM cases. A variety of breeds, including Quarter Horse, Appaloosa, Warmblood, Connemara-cross, Cob, Polo Pony and Thoroughbred cross carried the mutation. CONCLUSIONS The GYS1 mutation is an important cause of exertional rhabdomyolysis of UK horse breeds but does not account for all forms of PSSM. POTENTIAL RELEVANCE Genotyping is recommended in cases of exertional rhabdomyolysis, prior to or in combination with, muscle biopsy. However a significant proportion of horses with histopathological evidence of PSSM and/or exertional rhabdomyolysis have different diseases.

Collaboration


Dive into the Molly E. McCue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica L. Petersen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Raymond J. Geor

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Gabriella Lindgren

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge