Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica M. Molkentine is active.

Publication


Featured researches published by Jessica M. Molkentine.


Clinical Cancer Research | 2011

MK-1775, a novel wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells

Kathleen Bridges; Hiroshi Hirai; Carolyn A. Buser; Colin Brooks; Huifeng Liu; Thomas A. Buchholz; Jessica M. Molkentine; Kathryn A. Mason; Raymond E. Meyn

Purpose: Radiotherapy is commonly used to treat a variety of solid tumors. However, improvements in the therapeutic ratio for several disease sites are sorely needed, leading us to assess molecularly targeted therapeutics as radiosensitizers. The aim of this study was to assess the wee1 kinase inhibitor, MK-1775, for its ability to radiosensitize human tumor cells. Experimental Design: Human tumor cells derived from lung, breast, and prostate cancers were tested for radiosensitization by MK-1775 using clonogenic survival assays. Both p53 wild-type and p53-defective lines were included. The ability of MK-1775 to abrogate the radiation-induced G2 block, thereby allowing cells harboring DNA lesions to prematurely progress into mitosis, was determined using flow cytometry and detection of γ-H2AX foci. The in vivo efficacy of the combination of MK-1775 and radiation was assessed by tumor growth delay experiments using a human lung cancer cell line growing as a xenograft tumor in nude mice. Results: Clonogenic survival analyses indicated that nanomolar concentrations of MK-1775 radiosensitized p53-defective human lung, breast, and prostate cancer cells but not similar lines with wild-type p53. Consistent with its ability to radiosensitize, MK-1775 abrogated the radiation-induced G2 block in p53-defective cells but not in p53 wild-type lines. MK-1775 also significantly enhanced the antitumor efficacy of radiation in vivo as shown in tumor growth delay studies, again for p53-defective tumors. Conclusions: These results indicate that p53-defective human tumor cells are significantly radiosensitized by the potent and selective wee1 kinase inhibitor, MK-1775, in both the in vitro and in vivo settings. Taken together, our findings strongly support the clinical evaluation of MK-1775 in combination with radiation. Clin Cancer Res; 17(17); 5638–48. ©2011 AACR.


Radiotherapy and Oncology | 2012

Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways

Uma Raju; Oliver Riesterer; Zhi Qiang Wang; David P. Molkentine; Jessica M. Molkentine; Faye M. Johnson; Bonnie S. Glisson; Luka Milas; K. Kian Ang

BACKGROUND AND PURPOSE Although inhibition of epidermal growth factor receptor (EGFR) signaling during radiation led to improvement of tumor control and survival, novel strategies are needed to further improve the outcome of patients with locally advanced head and neck carcinoma. Because EGFR is known to interact with c-Src kinases, the present study investigated dasatinib (BMS-354825), an inhibitor of c-Src kinases, for its efficacy in enhancing radiosensitivity of human head and neck squamous cell carcinomas (HNSCC) in vitro and examined the underlying mechanisms for this effect. MATERIALS AND METHODS Six HNSCC lines were exposed to dasatinib, radiation, or both, and assessed for c-Src and EGFR expression, cell survival and colony forming ability. Among these cell lines, HN-5 and FaDu lines were analyzed for induction of apoptosis, cell cycle re-distribution and for nuclear localization of EGFR, γ-H2AX and 53BP1 proteins. Immuno-precipitation and Western blots were performed to analyze the levels and binding of proteins involved in cell survival, apoptosis and DNA repair pathways. Suppression of c-Src by siRNA and subsequent clonogenic assay was performed in HN-5 cells. RESULTS All six HNSCC lines that were examined expressed high levels of c-Src. Two (HN-5 and MDA-183) expressed higher levels of EGFR than other lines. Dasatinib suppressed cell survival of all cell lines tested independent of c-Src or EGFR levels but enhanced the radiosensitivity of HN-5 and MDA-183. HN-5 and FaDu were analyzed further. Dasatinib suppressed phosphorylation of c-Src in both cell lines, but decreased repair of radiation-induced DNA damage in HN-5 cells only as evidenced by suppression of c-Abl and Nbs-1 activity, inhibition of the association between c-Src and EGFR or Her-2, prolongation of nuclear γ-H2AX and 53BP1 foci and inhibition of EGFR nuclear localization and its association with DNA-PKcs. Finally, partial suppression of c-Src resulted in a small increase in HN-5 cell radiosensitivity. CONCLUSIONS Our data demonstrate that dasatinib induces apoptosis and blocks DNA repair in EGFR-expressing HNSCC cells and improves radiotherapy outcome. These findings warrant further investigation using in vivo tumor models for potential translation into clinical testing.


Radiotherapy and Oncology | 2013

Use of the LQ model with large fraction sizes results in underestimation of isoeffect doses

Tommy Sheu; Jessica M. Molkentine; Mark K. Transtrum; Thomas A. Buchholz; Hubert Rodney Withers; Howard D. Thames; Kathy A. Mason

PURPOSE To test the appropriateness of the linear-quadratic (LQ) model to describe survival of jejunal crypt clonogens after split doses with variable (small 1-6 Gy, large 8-13 Gy) first dose, as a model of its appropriateness for both small and large fraction sizes. METHODS C3Hf/KamLaw mice were exposed to whole body irradiation using 300 kVp X-rays at a dose rate of 1.84 Gy/min, and the number of viable jejunal crypts was determined using the microcolony assay. 14 Gy total dose was split into unequal first and second fractions separated by 4 h. Data were analyzed using the LQ model, the lethal potentially lethal (LPL) model, and a repair-saturation (RS) model. RESULTS Cell kill was greater in the group receiving the larger fraction first, creating an asymmetry in the plot of survival vs size of first dose, as opposed to the prediction of the LQ model of a symmetric response. There was a significant difference in the estimated βs (higher β after larger first doses), but no significant difference in the αs, when large doses were given first vs small doses first. This difference results in underestimation (based on present data by approximately 8%) of isoeffect doses using LQ model parameters based on small fraction sizes. While the LPL model also predicted a symmetric response inconsistent with the data, the RS model results were consistent with the observed asymmetry. CONCLUSION The LQ model underestimates doses for isoeffective crypt-cell survival with large fraction sizes (in the present setting, >9 Gy).


Journal of Thoracic Oncology | 2014

A high content clonogenic survival drug screen identifies MEK inhibitors as potent radiation sensitizers for KRAS mutant non-small-cell lung cancer

Steven H. Lin; Jing Zhang; Uma Giri; Clifford Stephan; Mary Sobieski; Ling Zhong; Kathy A. Mason; Jessica M. Molkentine; Howard D. Thames; Stephen S. Yoo; John V. Heymach

Introduction: Traditional clonogenic survival and high throughput colorimetric assays are inadequate as drug screens to identify novel radiation sensitizers. We developed a method that we call the high content clonogenic survival assay (HCSA) that will allow screening of drug libraries to identify candidate radiation sensitizers. Methods: Drug screen using HCSA was done in 96 well plates. After drug treatment, irradiation, and incubation, colonies were stained with crystal violet and imaged on the INCell 6000 (GE Health). Colonies achieving 50 or more cells were enumerated using the INCell Developer image analysis software. A proof-of-principle screen was done on the KRAS mutant lung cancer cell line H460 and a Custom Clinical Collection (146 compounds). Results: Multiple drugs of the same class were found to be radiation sensitizers and levels of potency seemed to reflect the clinical relevance of these drugs. For instance, several PARP inhibitors were identified as good radiation sensitizers in the HCSA screen. However, there were also a few PARP inhibitors not found to be sensitizing that have either not made it into clinical development, or in the case of BSI-201, was proven to not even be a PARP inhibitor. We discovered that inhibitors of pathways downstream of activated mutant KRAS (PI3K, AKT, mTOR, and MEK1/2) sensitized H460 cells to radiation. Furthermore, the potent MEK1/2 inhibitor tramenitib selectively enhanced radiation effects in KRAS mutant but not wild-type lung cancer cells. Conclusions: Drug screening for novel radiation sensitizers is feasible using the HCSA approach. This is an enabling technology that will help accelerate the discovery of novel radiosensitizers for clinical testing.


Oncogene | 2017

TRIP12 as a mediator of human papillomavirus/p16-related radiation enhancement effects.

L. Wang; Peijing Zhang; David P. Molkentine; Chun Ming Chen; Jessica M. Molkentine; Hailong Piao; U. Raju; Jiexin Zhang; David Valdecanas; R. C. Tailor; Howard D. Thames; T. A. Buchholz; Junjie Chen; Li Ma; K. A. Mason; K.K. Ang; Raymond E. Meyn; H. D. Skinner

Patients with human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) have better responses to radiotherapy and higher overall survival rates than do patients with HPV-negative HNSCC, but the mechanisms underlying this phenomenon are unknown. p16 is used as a surrogate marker for HPV infection. Our goal was to examine the role of p16 in HPV-related favorable treatment outcomes and to investigate the mechanisms by which p16 may regulate radiosensitivity. HNSCC cells and xenografts (HPV/p16-positive and -negative) were used. p16-overexpressing and small hairpin RNA-knockdown cells were generated, and the effect of p16 on radiosensitivity was determined by clonogenic cell survival and tumor growth delay assays. DNA double-strand breaks (DSBs) were assessed by immunofluorescence analysis of 53BP1 foci; DSB levels were determined by neutral comet assay; western blotting was used to evaluate protein changes; changes in protein half-life were tested with a cycloheximide assay; gene expression was examined by real-time polymerase chain reaction; and data from The Cancer Genome Atlas HNSCC project were analyzed. p16 overexpression led to downregulation of TRIP12, which in turn led to increased RNF168 levels, repressed DNA damage repair (DDR), increased 53BP1 foci and enhanced radioresponsiveness. Inhibition of TRIP12 expression further led to radiosensitization, and overexpression of TRIP12 was associated with poor survival in patients with HPV-positive HNSCC. These findings reveal that p16 participates in radiosensitization through influencing DDR and support the rationale of blocking TRIP12 to improve radiotherapy outcomes.


Behavioural Brain Research | 2016

Sickness behavior induced by cisplatin chemotherapy and radiotherapy in a murine head and neck cancer model is associated with altered mitochondrial gene expression

Elisabeth G. Vichaya; Jessica M. Molkentine; Daniel W. Vermeer; Adam K. Walker; Rebekah Feng; Gerard N. Holder; Katherine V. Luu; Ryan M. Mason; Leo Saligan; Cobi J. Heijnen; Annemieke Kavelaars; Kathryn A Mason; John H. Lee; Robert Dantzer

The present study was undertaken to explore the possible mechanisms of the behavioral alterations that develop in response to cancer and to cancer therapy. For this purpose we used a syngeneic heterotopic mouse model of human papilloma virus (HPV)-related head and neck cancer in which cancer therapy is curative. Mice implanted or not with HPV+ tumor cells were exposed to sham treatment or a regimen of cisplatin and radiotherapy (chemoradiation). Sickness was measured by body weight loss and reduced food intake. Motivation was measured by burrowing, a highly prevalent species specific behavior. Tumor-bearing mice showed a gradual decrease in burrowing over time and increased brain and liver inflammatory cytokine mRNA expression by 28 days post tumor implantation. Chemoradiation administered to healthy mice resulted in a mild decrease in burrowing, body weight, and food intake. Chemoradiation in tumor-bearing mice decreased tumor growth and abrogated liver and brain inflammation, but failed to attenuate burrowing deficits. PCR array analysis of selected hypoxia and mitochondrial genes revealed that both the tumor and chemoradiation altered the expression of genes involved in mitochondrial energy metabolism within the liver and brain and increased expression of genes related to HIF-1α signaling within the brain. The most prominent changes in brain mitochondrial genes were noted in tumor-bearing mice treated with chemoradiation. These findings indicate that targeting mitochondrial dysfunction following cancer and cancer therapy may be a strategy for prevention of cancer-related symptoms.


Psychoneuroendocrinology | 2017

Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer

Elisabeth G. Vichaya; Daniel W. Vermeer; D.L. Christian; Jessica M. Molkentine; Kathy A. Mason; John A. H. Lee; Robert Dantzer

Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic murine model of HPV-related head and neck cancer. However, the inflammatory state and behavioral changes induced by this tumor clearly differ from other forms of inflammation-induced sickness behavior.


European Journal of Pharmaceutical Sciences | 2014

Polymer complex of WR 2721. Synthesis and radioprotective efficiency

Neli Koseva; Ivelina Tsacheva; Violeta Mitova; Elitsa Vodenicharova; Jessica M. Molkentine; Kathryn A Mason; Kolio Troev

Polymer complex constructed from WR 2721 and poly(hydroxyoxyethylene phosphate) was synthesized. The structure of complex formed was elucidated by (1)H-, (13)C, (31)P NMR and FT-IR spectroscopy. The radioprotector was immobilized via ionic bonds. Radioprotective efficacy was evaluated by clonal survival of stem cells in crypts of mouse small intestine, and incidence and latency of the acute radiation induced bone marrow syndrome. Protection factors were assessed for WR 2721 and for the polymer complex. Protection factors for the polymer complex ranged from 2.6 for intestinal stem cell survival to 1.35 for 30 day survival (LD50) following whole body radiation exposure. In all cases, the polymer complex was a significantly better radiation protector than the parent compound.


Cancer Research | 2017

Tumor-associated fatigue in cancer patients develops independently of il1 signaling

Aaron J. Grossberg; Elisabeth G. Vichaya; D.L. Christian; Jessica M. Molkentine; Daniel W. Vermeer; P.S. Gross; Paola D. Vermeer; John A. H. Lee; Robert Dantzer

Fatigue is the most common symptom of cancer at diagnosis, yet causes and effective treatments remain elusive. As tumors can be highly inflammatory, it is generally accepted that inflammation mediates cancer-related fatigue. However, evidence to support this assertion is mostly correlational. In this study, we directly tested the hypothesis that fatigue results from propagation of tumor-induced inflammation to the brain and activation of the central proinflammatory cytokine, IL1. The heterotopic syngeneic murine head and neck cancer model (mEER) caused systemic inflammation and increased expression of Il1b in the brain while inducing fatigue-like behaviors characterized by decreased voluntary wheel running and exploratory activity. Expression of Il1b in the brain was not associated with any alterations in motivation, measured by responding in a progressive ratio schedule of food reinforcement, depression-like behaviors, or energy balance. Decreased wheel running occurred prior to Il1b detection in the brain, when systemic inflammation was minimal. Furthermore, mice null for two components of IL1β signaling, the type 1 IL1 receptor or the receptor adapter protein MyD88, were not protected from tumor-induced decreases in wheel running, despite attenuated cytokine action and expression. Behavioral and inflammatory analysis of four additional syngeneic tumor models revealed that tumors can induce fatigue regardless of their systemic or central nervous system inflammatory potential. Together, our results show that brain IL1 signaling is not necessary for tumor-related fatigue, dissociating this type of cancer sequela from systemic cytokine expression.Significance: These findings challenge the current understanding of fatigue in cancer patients, the most common and debilitating sequela associated with malignancy. Cancer Res; 78(3); 695-705. ©2017 AACR.


bioRxiv | 2018

Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival from Lethal Fractionated Radiation

Cullen M. Taniguchi; Jessica M. Molkentine; Tara N. Fujimoto; Thomas Horvath; Aaron J. Grossberg; Amit Deorukhkar; Errol L. G. Samuel; Wai Kin Chan; Philip L Lorenzi; Robert Dantzer; James M. Tour; Kathy A. Mason

Unresectable pancreatic cancer is almost universally lethal because chemotherapy and radiation cannot completely stop the growth of the cancer. The major problem with using radiation to approximate surgery in unresectable disease is that the radiation dose required to ablate pancreatic cancer exceeds the tolerance of the nearby duodenum. WR-2721, also known as amifostine, is a well-known radioprotector, but has significant clinical toxicities when given systemically. WR-2721 is a prodrug and is converted to its active metabolite, WR-1065, by alkaline phosphatases in normal tissues. The small intestine is highly enriched in these activating enzymes, and thus we reasoned that oral administration of WR-2721 just before radiation would result in localized production of the radioprotective WR-1065 in the small intestine, providing protective benefits without the significant systemic side effects. Here, we show that oral WR-2721 is as effective as intraperitoneal WR-2721 in promoting survival of intestinal crypt clonogens after morbid irradiation. Furthermore, oral WR-2721 confers full radioprotection and survival after lethal upper abdominal irradiation of 12.5Gy x 5 fractions (total of 62.5Gy, D2EQ=140.6Gy), which would likely ablate pancreatic cancer. We find that the efficacy of oral WR-2721 stems from its selective accumulation in the intestine, but not in tumors or other normal tissues, as determined by in vivo mass spectrometry analysis. Thus, we demonstrate that oral WR-2721 is a well-tolerated, and quantitatively selective, radioprotector of the intestinal tract that is capable of enabling clinically relevant ablative doses of radiation to the upper abdomen without unacceptable gastrointestinal toxicity.

Collaboration


Dive into the Jessica M. Molkentine's collaboration.

Top Co-Authors

Avatar

Kathy A. Mason

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert Dantzer

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elisabeth G. Vichaya

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David P. Molkentine

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Annemieke Kavelaars

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cullen M. Taniguchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tara N. Fujimoto

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Grossberg

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cobi J. Heijnen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

D.L. Christian

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge