Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica R. Murray is active.

Publication


Featured researches published by Jessica R. Murray.


Nature | 2005

Implications for prediction and hazard assessment from the 2004 Parkfield earthquake

William H. Bakun; Brad T. Aagaard; B. Dost; William L. Ellsworth; Jeanne L. Hardebeck; Ruth A. Harris; Chen Ji; M. J. S. Johnston; John Langbein; James J. Lienkaemper; Andrew J. Michael; Jessica R. Murray; Robert M. Nadeau; Paul A. Reasenberg; M. S. Reichle; Evelyn Roeloffs; A. Shakal; Robert W. Simpson; Felix Waldhauser

Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen. Here we show what these data, when combined with data from earlier Parkfield earthquakes, tell us about earthquake physics and earthquake prediction. The 2004 Parkfield earthquake, with its lack of obvious precursors, demonstrates that reliable short-term earthquake prediction still is not achievable. To reduce the societal impact of earthquakes now, we should focus on developing the next generation of models that can provide better predictions of the strength and location of damaging ground shaking.


Bulletin of the Seismological Society of America | 2006

Slip on the San Andreas Fault at Parkfield, California, over Two Earthquake Cycles, and the Implications for Seismic Hazard

Jessica R. Murray; John Langbein

Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation. Online material : Model fault geometry, fit to the data for the inversions, and model resolution.


Bulletin of the Seismological Society of America | 2006

Coseismic and Initial Postseismic Deformation from the 2004 Parkfield, California, Earthquake, Observed by Global Positioning System, Electronic Distance Meter, Creepmeters, and Borehole Strainmeters

John Langbein; Jessica R. Murray; H. A. Snyder

Global Positioning System (gps), electronic distance meter, creepmeter, and strainmeter measurements spanning the M 6.0 Parkfield, California, earthquake are examined. Using these data from 100 sec through 9 months following the mainshock, the Omori’s law, with rate inversely related to time, 1/ t p and p ranging between 0.7 and 1.3, characterizes the time-dependent deformation during the postseismic period; these results are consistent with creep models for elastic solids. With an accurate function of postseismic response, the coseismic displacements can be estimated from the high-rate, 1-min sampling gps; and the coseismic displacements are approximately 75% of those estimated from the daily solutions. Consequently, fault-slip models using daily solutions overestimate coseismic slip. In addition, at 2 months and at 8 months following the mainshock, postseismic displacements are modeled as slip on the San Andreas fault with a lower bound on the moment exceeding that of the coseismic moment. Online material: Data description and supplementary figures, tables, and data used in models and time-series analysis.


Journal of Geophysical Research | 2014

Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data

Sarah E. Minson; Jessica R. Murray; John Langbein; Joan Gomberg

We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.


Seismological Research Letters | 2015

Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake

William D. Barnhart; Jessica R. Murray; Sang-Ho Yun; J. L. Svarc; Sergey V. Samsonov; Eric J. Fielding; Benjamin A. Brooks; Pietro Milillo

On 24 August 2014, the M 6.0 South Napa earthquake shook much of the San Francisco Bay area, leading to significant damage in the Napa Valley. The earthquake occurred in the vicinity of the West Napa fault (122.313° W, 38.22° N, 11.3 km), a mapped structure located between the Rodger’s Creek and Green Valley faults, with nearly pure right‐lateral strike‐slip motion (strike 157°, dip 77°, rake –169°; http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#summary, last accessed December 2014) (Fig. 1). The West Napa fault previously experienced an M 5 strike‐slip event in 2000 but otherwise exhibited no previous definitive evidence of historic earthquake rupture (Rodgers et al., 2008; Wesling and Hanson, 2008). Evans et al. (2012) found slip rates of ∼9.5  mm/yr along the West Napa fault, with most slip rate models for the Bay area placing higher slip rates and greater earthquake potential on the Rodger’s Creek and Green Valley faults, respectively (e.g., Savage et al., 1999; d’Alessio et al., 2005; Funning et al., 2007).


Bulletin of the Seismological Society of America | 2006

San Andreas Fault Geometry in the Parkfield, California, Region

Robert W. Simpson; M. Barall; John Langbein; Jessica R. Murray; M. J. Rymer

In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ∼50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the northwest, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ∼6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth’s surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.


Science Advances | 2015

Crowdsourced earthquake early warning

Sarah E. Minson; Benjamin A. Brooks; Craig L. Glennie; Jessica R. Murray; John Langbein; S. E. Owen; Thomas H. Heaton; Robert A. Iannucci; Darren Hauser

Consumer devices and real and simulated earthquake data demonstrate that earthquake early warning can be achieved via crowdsourcing. Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.


Geophysical Research Letters | 2016

Spatial variations in fault friction related to lithology from rupture and afterslip of the 2014 South Napa, California, earthquake

Michael Floyd; R. J. Walters; J. R. Elliott; Gareth J. Funning; J. L. Svarc; Jessica R. Murray; Andrew Hooper; Yngvar Larsen; Petar Marinkovic; Roland Bürgmann; Ingrid Anne Johanson; Tim J. Wright

Following earthquakes, faults are often observed to continue slipping aseismically. It has been proposed that this afterslip occurs on parts of the fault with rate-strengthening friction that are stressed by the main shock, but our understanding has been limited by a lack of immediate, high-resolution observations. Here we show that the behavior of afterslip following the 2014 South Napa earthquake in California varied over distances of only a few kilometers. This variability cannot be explained by coseismic stress changes alone. We present daily positions from continuous and survey GPS sites that we remeasured within 12 h of the main shock and surface displacements from the new Sentinel-1 radar mission. This unique geodetic data set constrains the distribution and evolution of coseismic and postseismic fault slip with exceptional resolution in space and time. We suggest that the observed heterogeneity in behavior is caused by lithological controls on the frictional properties of the fault plane.


Journal of Geophysical Research | 2016

Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift

William D. Barnhart; Jessica R. Murray; Richard W. Briggs; Francisco Gomez; Charles P. J. Miles; J. L. Svarc; Sebastian Riquelme; Bryan J. Stressler

Great subduction earthquakes are thought to rupture portions of the megathrust, where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, postseismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, coseismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here we use interferometric synthetic aperture radar and Global Position System observations to map the distribution of coseismic slip of the 2015 Mw 8.3 Illapel, Chile, earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the coseismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep coseismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either preexisting or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of coseismic and postseismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.


Journal of Geophysical Research | 2014

Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

Jessica R. Murray; Sarah E. Minson; J. L. Svarc

Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earths surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earths surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

Collaboration


Dive into the Jessica R. Murray's collaboration.

Top Co-Authors

Avatar

J. L. Svarc

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John Langbein

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Minson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Brooks

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brad T. Aagaard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Fred F. Pollitz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James J. Lienkaemper

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annemarie S. Baltay

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge