Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Satkoski Trask is active.

Publication


Featured researches published by Jessica Satkoski Trask.


Primates | 2011

The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta).

Jessica Satkoski Trask; Ripan S. Malhi; Sree Kanthaswamy; Jesse Johnson; Wendy T. Garnica; Venkat S. Malladi; David Glenn Smith

This study was designed to address issues regarding sample size and marker location that have arisen from the discovery of SNPs in the genomes of poorly characterized primate species and the application of these markers to the study of primate population genetics. We predict the effect of discovery sample size on the probability of discovering both rare and common SNPs and then compare this prediction with the proportion of common and rare SNPs discovered when different numbers of individuals are sequenced. Second, we examine the effect of genomic region on estimates of common population genetic data, comparing markers from both coding and non-coding regions of the rhesus macaque genome and the population genetic data calculated from these markers, to measure the degree and direction of bias introduced by SNPs located in coding versus non-coding regions of the genome. We found that both discovery sample size and genomic region surveyed affect SNP marker attributes and population genetic estimates, even when these are calculated from an expanded data set containing more individuals than the original discovery data set. Although none of the SNP detection methods or genomic regions tested in this study was completely uninformative, these results show that each has a different kind of genetic variation that is suitable for different purposes, and each introduces specific types of bias. Given that each SNP marker has an individual evolutionary history, we calculated that the most complete and unbiased representation of the genetic diversity present in the individual can be obtained by incorporating at least 10 individuals into the discovery sample set, to ensure the discovery of both common and rare polymorphisms.


American Journal of Primatology | 2013

Single Nucleotide Polymorphisms Reveal Patterns of Allele Sharing across the Species Boundary between Rhesus (Macaca mulatta) and Cynomolgus (M. fascicularis) Macaques

Jessica Satkoski Trask; Wendy T. Garnica; David Glenn Smith; Paul Houghton; Nicholas W. Lerche; Sree Kanthaswamy

Both phenotypic and genetic evidence for asymmetric hybridization between rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques has been observed in the region of Indochina where both species are sympatric. The large‐scale sharing of major histocompatibility complex (MHC) class II alleles between the two species in this region supports the hypothesis that genes, and especially genes involved in immune response, are being transferred across the species boundary. This differential introgression has important implications for the incorporation of cynomolgus macaques of unknown geographic origin in biomedical research protocols. Our study found that for 2,808 single‐nucleotide polymorphism (SNP) markers, the minor allele frequencies (MAF) and observed heterozygosity calculated from a sample of Vietnamese cynomolgus macaques was significantly different from those calculated from samples of both Chinese rhesus and Indonesian cynomolgus macaques. SNP alleles from Chinese rhesus macaques were overrepresented in a sample of Vietnamese cynomolgus macaques relative to their Indonesian conspecifics and located in genes functionally related to the primary immune system. These results suggest that Indochinese cynomolgus macaques represent a genetically and immunologically distinct entity from Indonesian cynomolgus macaques. Am. J. Primatol. 75:135‐144, 2013.


American Journal of Primatology | 2014

Development and validation of a SNP‐based assay for inferring the genetic ancestry of rhesus macaques (Macaca mulatta)

Sree Kanthaswamy; Zachary P. Johnson; Jessica Satkoski Trask; David Glenn Smith; Ranjani Ramakrishnan; Jason Bahk; Jillian Ng; Roger W. Wiseman; H. Michael Kubisch; Eric J. Vallender; Jeffrey Rogers; Betsy Ferguson

Rhesus macaques (Macaca mulatta) are an important primate model species in several areas of biomedical research. The wide geographic distribution of this species has led to significant genetic differentiation among local and regional populations. These regional differences can be important factors in the selection of the most appropriate subjects for particular research studies, as animals from different populations can respond differently to the same experimental treatment. Consequently, it is valuable to confirm the ancestry of individual rhesus monkeys from geographically distinct populations. Using DNA samples obtained from rhesus macaques from six National Primate Research Centers, we tested a set of 384 potential ancestry informative single nucleotide polymorphisms (SNPs) and identified a final panel of 91 SNPs that can reliably distinguish Indian‐origin from Chinese‐origin rhesus monkeys. This genetic test can be used to determine the ancestral origin of animals and to detect individuals that are hybrids between these two regional populations. To demonstrate use of the SNP panel, we investigated the ancestry of 480 animals from the Yerkes NPRC (YNPRC) for which the colony records were insufficient to clearly establish ancestry. Three of the YNPRC animals tested were determined to be hybrids. This SNP ancestry tool will be useful to researchers, colony managers, and others who wish to evaluate the ancestral origin of individual rhesus macaques, and therefore will facilitate more effective and efficient use of these animals in biomedical research. Am. J. Primatol. 76:1105–1113, 2014.


Virology | 2010

The complete genome and genetic characteristics of SRV-4 isolated from cynomolgus monkeys (Macaca fascicularis)

Chih-Ling Zao; Karyn Armstrong; Lisa Tomanek; Anthony Cooke; Ron Berger; J. Scot Estep; Preston A. Marx; Jessica Satkoski Trask; David Glenn Smith; JoAnn L. Yee; Nicholas W. Lerche

At least 5 serotypes of exogenous simian retrovirus type D (SRV/D) have been found in nonhuman primates, but only SRV-1, 2 and 3 have been completely sequenced. SRV-4 was recovered once from cynomolgus macaques in California in 1984, but its genome sequences are unknown. Here we report the second identification of SRV-4 and its complete genome from infected cynomolgus macaques with Indochinese and Indonesian/Indochinese mixed ancestry. Phylogenetic analysis demonstrated that SRV-4 was distantly related to SRV-1, 2, 3, 5, 6 and 7. SRV/D-T, a new SRV/D recovered in 2005 from cynomolgus monkeys at Tsukuba Primate Center in Japan, clustered with the SRV-4 isolates from California and Texas and was shown to be another occurrence of SRV-4 infection. The repeated occurrence of SRV-4 in cynomolgus monkeys in different areas of the world and across 25years suggests that this species is the natural host of SRV-4.


Molecular Biology Reports | 2014

Evolution of primate α and θ defensins revealed by analysis of genomes.

Diyan Li; Long Zhang; Huadong Yin; Huailiang Xu; Jessica Satkoski Trask; David Glenn Smith; Ying Li; Mingyao Yang; Qing Zhu

Abstract Defensins are endogenous peptides with cysteine-rich antimicrobial ability that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: α, β and θ-defensins. α-defensins are most present in neutrophils and Paneth cells; β-defensins are involved in protecting the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and θ-defensins are physically distinguished as the only known fully-cyclic peptides of animal origin, which are first isolated from rhesus macaques. All three kinds of defensins have six conserved cysteines, three intramolecular disulfide bonds, a net positive charge, and β-sheet regions. α and θ-defensins are closely related, comparative amino acid sequences showed that the difference between them is that θ-defensins have an additional stop codon limits the initial defensin domain peptides to 12 residues. Humans, chimpanzees and gorillas do not produce θ-defensin peptides due to a premature stop codon present in the signal sequence of all θ-defensin pseudogenes. By using comprehensive computational searches, here we report the discovery of complete repertoires of the α and θ-defensin gene family in ten primate species. Consistent with previous studies, our phylogenetic analyses showed all primate θ-defensins evident formed one distinct clusters evolved from α-defensins. β-defensins are ancestors of both α and θ-defensins. Human has two copies of DEFA1 and DEFT1P, and two extra DEFA3 and DEFA10P genes compared with gorilla. As different primates inhabit in quite different ecological niches, the production of species-specific α and θ-defensins and these highly evolved θ-defensins in old world monkeys would presumably allow them to better respond to the specific microbial challenges that they face.


American Journal of Primatology | 2014

An empirical comparison of short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) for relatedness estimation in Chinese rhesus macaques (Macaca mulatta)

Cody T. Ross; Jessica A. Weise; Sarah Bonnar; David Nolin; Jessica Satkoski Trask; David Glenn Smith; Betsy Ferguson; James C. Ha; H. Michael Kubisch; Amanda Vinson; Sree Kanthaswamy

We compare the effectiveness of short tandem repeat (STR) and single nucleotide polymorphism (SNP) genotypes for estimating pairwise relatedness, using molecular data and pedigree records from a captive Chinese rhesus macaque population at the California National Primate Research Center. We find that a panel of 81 SNPs is as effective at estimating first‐order kin relationships as a panel of 14 highly polymorphic STRs. We note, however, that the selected STRs provide more precise predictions of relatedness than the selected SNPs, and may be preferred in contexts that require the discrimination of kin related more distantly than first‐order relatives. Additionally, we compare the performance of three commonly used relatedness estimation algorithms, and find that the Wang [2002] algorithm outperforms other algorithms when analyzing STR data, while the Queller & Goodnight [1989] algorithm outperforms other algorithms when analyzing SNP data. Future research is needed to address the number of SNPs required to reach the discriminatory power of a standard STR panel in relatedness estimation for primate colony management. Am. J. Primatol. 76:313–324, 2014.


Journal of Medical Primatology | 2013

Expression levels of 10 candidate genes in lung tissue of vaccinated and TB‐infected cynomolgus macaques

Morteza Roodgar; Andrew A. Lackner; Deepak Kaushal; Satya Dandekar; Jessica Satkoski Trask; Christiana Drake; David Glenn Smith

The expression of ten tuberculosis candidate genes in lung and lymph nodes of cynomologus macaques vaccinated and experimentally infected with Mycobacterium tuberculosis (Mtb) was quantified. The expression of TNFα, IL10, IL1β, TLR4, IL17, IL6, IL12, and iNOS in the lungs of vaccinated animals was higher than that of non‐vaccinated animals.


Journal of Forensic Sciences | 2013

Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

Christopher E. Johnson; Amritha Premasuthan; Jessica Satkoski Trask; Sree Kanthaswamy

Most narcotics‐related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3′ exon‐trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real‐time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa.


Scientific Reports | 2016

The musk chemical composition and microbiota of Chinese forest musk deer males

Diyan Li; Binlong Chen; Long Zhang; Uma Gaur; Tianyuan Ma; Hang Jie; Guijun Zhao; Nan Wu; Zhongxian Xu; Huailiang Xu; Yongfang Yao; Ting Lian; Xiaolan Fan; Deying Yang; Mingyao Yang; Qing Zhu; Jessica Satkoski Trask

Male musk deer secrete musk from the musk gland located between their naval and genitals. Unmated male forest musk deer generate a greater amount of musk than mated males, potentially allowing them to attract a greater number of females. In this study, we used gas chromatography and mass spectrometry (GC/MS) to explore musk chemical composition of the musk pods of captive mated and unmated sexually mature Chinese forest musk deer and used next-generation sequencing to intensively survey the bacterial communities within them. Analysis of the chemical composition of the musk showed that unmated males have more muscone and cholesterol. Features of the musk16S rRNA gene showed that mated Chinese forest musk deer have both a greater Shannon diversity (p < 0.01) and a greater number of estimated operational taxonomic units than unmated ones; many bacterial genera were overrepresented in unmated Chinese forest musk deer males. Members of these genera might be involved in musk odor fermentation. PICRUSt analysis revealed that metabolic pathways such as aldosterone-regulated sodium reabsorption, metabolism of terpenoids and polyketides, flavone and flavonol biosynthesis, and isoflavonoid biosynthesis were enriched in the musk of unmated Chinese forest musk deer males.


American Journal of Physical Anthropology | 2014

A genetic comparison of two alleged subspecies of Philippine cynomolgus macaques.

David Glenn Smith; Jillian Ng; Debra George; Jessica Satkoski Trask; Paul Houghton; Balbir Singh; Jason Villano; Sreetharan Kanthaswamy

Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.

Collaboration


Dive into the Jessica Satkoski Trask's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jillian Ng

University of California

View shared research outputs
Top Co-Authors

Avatar

Sreetharan Kanthaswamy

California National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Qing Zhu

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Long Zhang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Diyan Li

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Cody T. Ross

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huadong Yin

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge