Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessié M. Gutierres is active.

Publication


Featured researches published by Jessié M. Gutierres.


European Journal of Pharmacology | 2009

Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats

Roberta Schmatz; Cinthia M. Mazzanti; Roselia Maria Spanevello; Naiara Stefanello; Jessié M. Gutierres; Maísa Corrêa; Michelle Melgarejo da Rosa; Maribel Antonello Rubin; Maria Rosa Chitolina Schetinger; Vera Maria Morsch

The objective of the present study was to investigate the effect of the administration of resveratrol (RV) on memory and on acetylcholinesterase (AChE) activity in the cerebral cortex, hippocampus, striatum, hypothalamus, cerebellum and blood in streptozotocin-induced diabetic rats. The animals were divided into six groups (n=6-13): Control/saline; Control/RV 10 mg/kg; Control/RV 20 mg/kg; Diabetic/saline; Diabetic/RV 10 mg/kg; Diabetic/RV 20 mg/kg. One day after 30 days of treatment with resveratrol the animals were submitted to behavioral tests and then submitted to euthanasia and the brain structures and blood were collected. The results showed a decrease in step-down latency in diabetic/saline group. Resveratrol (10 and 20 mg/kg) prevented the impairment of memory induced by diabetes. In the open field test, no significant differences were observed between the groups. In relation to AChE activity, a significant increase in diabetic/saline group (P<0.05) was observed in all brain structures compared to control/saline group. However, AChE activity decreased significantly in control/RV10 and control/RV20 (P<0.05) groups in cerebral cortex, hippocampus and striatum, while no significant differences were observed in diabetic/RV10 and diabetic/RV20 groups in all brain structures compared to control/saline group. Blood AChE activity increased significantly in diabetic/saline group (P<0.05) decreased in control/RV10, control/RV20 and diabetic/RV20 groups (P<0.05) compared to control/saline group. In conclusion, the present findings showed that treatment with resveratrol prevents the increase in AChE activity and consequently memory impairment in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and consequently improve cognition.


Food and Chemical Toxicology | 2012

Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes

Jamile F. Gonçalves; Fernando Teixeira Nicoloso; Pauline da Costa; Júlia Gomes Farias; Fabiano B. Carvalho; Michelle Melgarejo da Rosa; Jessié M. Gutierres; Fátima H. Abdalla; Juliana S.F. Pereira; Glaecir Roseni Mundstock Dias; Nilda Vargas Barbosa; Valderi L. Dressler; Maribel Antonello Rubin; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

This study investigated the cadmium (Cd) intoxication on cognitive, motor and anxiety performance of rats subjected to long-term exposure to diet with Cd salt or with Cd from contaminated potato tubers. Potato plantlets were micropropagated in MS medium and transplanted to plastic trays containing sand. Tubers were collected, planted in sand boxes and cultivated with 0 or 10 μM Cd and, after were oven-dried, powder processed and used for diet. Rats were divided into six groups and fed different diets for 5 months: control, potato, potato+Cd, 1, 5 or 25 mg/kg CdCl2. Cd exposure increased Cd concentration in brain regions. There was a significant decrease in the step-down latency in Cd-intoxicated rats and, elevated plus maze task revealed an anxiolytic effect in rats fed potato diet per se, and an anxiogenic effect in rats fed 25 mg/kg Cd. The brain structures of rats exposed to Cd salt or Cd from tubers showed an increased AChE activity, but Na+,K+-ATPase decreased in cortex, hypothalamus, and cerebellum. Therefore, we suggest an association between the long-term diet of potato tuber and a clear anxiolytic effect. Moreover, we observed an impaired cognition and enhanced anxiety-like behavior displayed by Cd-intoxicated rats coupled with a marked increase of brain Cd concentration, and increase and decrease of AChE and Na+,K+-ATPase activities, respectively.


International Journal of Developmental Neuroscience | 2014

Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats

Jessié M. Gutierres; Fabiano B. Carvalho; Maria Rosa Chitolina Schetinger; Paula Agostinho; Patricia C. Marisco; Juliano Marchi Vieira; Michele Melgarejo Rosa; Crystiani Bohnert; Maribel Antonello Rubin; Vera Maria Morsch; Roselia Maria Spanevello; Cinthia M. Mazzanti

Anthocyanins are a group of natural phenolic compounds responsible for the color to plants and fruits. These compounds might have beneficial effects on memory and have antioxidant properties. In the present study we have investigated the therapeutic efficacy of anthocyanins in an animal model of cognitive deficits, associated to Alzheimers disease, induced by scopolamine. We evaluated whether anthocyanins protect the effects caused by SCO on nitrite/nitrate (NOx) levels and Na+,K+‐ATPase and Ca2+‐ATPase and acetylcholinesterase (AChE) activities in the cerebral cortex and hippocampus (of rats. We used 4 different groups of animals: control (CTRL), anthocyanins treated (ANT), scopolamine‐challenged (SCO), and scopolamine + anthocyanins (SCO + ANT). After seven days of treatment with ANT (200 mg kg−1; oral), the animals were SCO injected (1 mg kg−1; IP) and were performed the behavior tests, and submitted to euthanasia. A memory deficit was found in SCO group, but ANT treatment prevented this impairment of memory (P < 0.05). The ANT treatment per se had an anxiolytic effect. AChE activity was increased in both in cortex and hippocampus of SCO group, this effect was significantly attenuated by ANT (P < 0.05). SCO decreased Na+,K+‐ATPase and Ca2+‐ATPase activities in hippocampus, and ANT was able to significantly (P < 0.05) prevent these effects. No significant alteration was found on NOx levels among the groups. In conclusion, the ANT is able to regulate cholinergic neurotransmission and restore the Na+,K+‐ATPase and Ca2+‐ATPase activities, and also prevented memory deficits caused by scopolamine administration.


Life Sciences | 2014

Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type.

Jessié M. Gutierres; Fabiano B. Carvalho; Maria Rosa Chitolina Schetinger; Patricia C. Marisco; Paula Agostinho; Marília V. Rodrigues; Maribel Antonello Rubin; Roberta Schmatz; Cássia Regina Silva; Giana de Paula Cognato; Júlia Gomes Farias; Cristiane Signor; Vera Maria Morsch; Cinthia M. Mazzanti; Maurício Reis Bogo; Carla Denise Bonan; Roselia Maria Spanevello

AIMS The aim of this study was to analyze if the pre-administration of anthocyanin on memory and anxiety prevented the effects caused by intracerebroventricular streptozotocin (icv-STZ) administration-induced sporadic dementia of Alzheimers type (SDAT) in rats. Moreover, we evaluated whether the levels of nitrite/nitrate (NOx), Na(+),K(+)-ATPase, Ca(2+)-ATPase and acethylcholinesterase (AChE) activities in the cerebral cortex (CC) and hippocampus (HC) are altered in this experimental SDAT. MAIN METHODS Male Wistar rats were divided in 4 different groups: control (CTRL), anthocyanin (ANT), streptozotocin (STZ) and streptozotocin+anthocyanin (STZ+ANT). After seven days of treatment with ANT (200mg/kg; oral), the rats were icv-STZ injected (3mg/kg), and four days later the behavior parameters were performed and the animals submitted to euthanasia. KEY FINDINGS A memory deficit was found in the STZ group, but ANT treatment showed that it prevents this impairment of memory (P<0.05). Our results showed a higher anxiety in the icv-STZ group, but treatment with ANT showed a per se effect and prevented the anxiogenic behavior induced by STZ. Our results reveal that the ANT treatment (100μM) tested displaces the specific binding of [(3)H] flunitrazepam to the benzodiazepinic site of GABAA receptors. AChE, Ca(+)-ATPase activities and NOx levels were found to be increased in HC and CC in the STZ group, which was attenuated by ANT (P<0.05). STZ decreased Na(+),K(+)-ATPase activity and ANT was able to prevent these effects (P<0.05). SIGNIFICANCE In conclusion, these findings demonstrated that ANT is able to regulate ion pump activity and cholinergic neurotransmission, as well as being able to enhance memory and act as an anxiolytic compound in animals with SDAT.


Pharmacology, Biochemistry and Behavior | 2012

Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats

Javed Anwar; Roselia Maria Spanevello; Gustavo R. Thomé; Naiara Stefanello; Roberta Schmatz; Jessié M. Gutierres; Juliano Marchi Vieira; Jucimara Baldissarelli; Fabiano B. Carvalho; Michelle Melgarejo da Rosa; Maribel Antonello Rubin; Amanda Maino Fiorenza; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

Acetylcholinesterase (AChE) is distributed throughout the body in both neuronal and non-neuronal tissues and plays an important role in the regulation of physiological events. Caffeic acid is a phenolic compound that has anti-inflammatory and neuroprotective properties. The aim of this study was to investigate in vitro and in vivo whether caffeic acid alters the AChE activity and behavioral parameters in rats. In the in vitro study, the concentrations of 0, 0.1, 0.5, 1.0, 1.5, and 2mM of caffeic acid were used. For the in vivo study, five groups were evaluated: group I (control); group II (canola oil), group III (10mg/kg of caffeic acid); group IV (50mg/kg of caffeic acid) and group V (100mg/kg of caffeic acid). Caffeic acid was diluted in canola oil and administered for 30 days. In vitro, the caffeic acid increased the AChE activity in the cerebral cortex, cerebellum, hypothalamus, whole blood, and lymphocytes at different concentrations. In muscle, this compound caused an inhibition in the AChE activity at concentrations of 0.5, 1.0, 1.5, and 2mM when compared to the control (P<0.05). In vivo, 50 and 100mg/kg of caffeic acid decreased the AChE activity in the cerebral cortex and striatum and increased the activity of this enzyme in the cerebellum, hippocampus, hypothalamus, pons, lymphocytes, and muscles when compared to the control group (P<0.05). The amount of 100mg/kg of caffeic acid improved the step-down latencies in the inhibitory avoidance. Our results demonstrated that caffeic acid improved memory and interfered with the cholinergic signaling. As a natural and promising compound caffeic acid should be considered potentially therapeutic in disorders that involve the cholinergic system.


Journal of Nutritional Biochemistry | 2015

Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination

Fabiano B. Carvalho; Jessié M. Gutierres; Crystiani Bohnert; Adriana M. Zago; Fátima H. Abdalla; Juliano Marchi Vieira; Heloisa Einloft Palma; Sara Marchesan Oliveira; Roselia Maria Spanevello; Marta Maria Frescura Medeiros Duarte; Sonia Terezinha dos Anjos Lopes; Graciane Aiello; Marta G. Amaral; Ney Luis Pippi; Cinthia M. Andrade

The aim of this study was to investigate the protective effect of anthocyanins (ANT) on oxidative and inflammatory parameters, as well as ion pump activities, in the pons of rats experimentally demyelinated with ethidium bromide (EB). Rats were divided in six groups: control, ANT 30 mg/kg, ANT 100 mg/kg, EB (0.1%), EB plus ANT 30 mg/kg and EB plus ANT 100 mg/kg. The EB cistern pons injection occurred on the first day. On day 7, there was a peak in the demyelination. During the 7 days, the animals were treated once per day with vehicle or ANT. It was observed that demyelination reduced Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and increased 4-hydroxynonenal, malondialdehyde, protein carbonyl and NO2plus NO3 levels. In addition, a depletion of glutathione reduced level/nonprotein thiol content and a decrease in superoxide dismutase activity were also seen. The dose of 100 mg/kg showed a better dose-response to the protective effects. The demyelination did not affect the neuronal viability but did increase the inflammatory infiltrate (myeloperoxidase activity) followed by an elevation in interleukin (IL)-1β, IL-6, tumor necrosis factor-α and interferon-γ levels. ANT promoted a reduction in cellular infiltration and proinflammatory mediators. Furthermore, ANT restored the levels of IL-10. Luxol fast blue staining confirmed the loss of myelin in the EB group and the protective effect of ANT 100 mg/kg. In conclusion, this study was the first to show that ANT are able to restore ion pump activities and protect cellular components against the inflammatory and oxidative damages induced by demyelination.


Physiology & Behavior | 2012

Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats

Jeandre Augusto dos Santos Jaques; João Felipe Peres Rezer; Fabiano B. Carvalho; Michelle Melgarejo da Rosa; Jessié M. Gutierres; Jamile F. Gonçalves; Roberta Schmatz; André Valle de Bairros; Cinthia M. Mazzanti; Maribel Antonello Rubin; Maria Rosa Chitolina Schetinger; Daniela Bitencourt Rosa Leal

Cigarette smoke, a widely spread habit, is associated with a decline in cognitive function and studies have demonstrated that curcumin (Cur), an Indian spice, possesses a strong neuroprotective potential. Considering the relevance of investigating dietary compounds this study aimed to investigate the effect of Cur on memory and acetylcholinesterase (AChE) activity in brain structures and blood of cigarette smoke-exposed rats. Male Wistar rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. The experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: Vehicle (corn oil), Cur 12.5 mg/kg, Cur 25 mg/kg and Cur 50 mg/kg. In the second, the animals were divided into 5 groups: Vehicle (corn oil), Smoke, Smoke plus Cur 12.5 mg/kg, Smoke plus Cur 25 mg/kg and Smoke plus Cur 50 mg/kg. Treatment with Cur significantly prevented the decreased latency and cholinergic alterations in cigarette smoke-exposed rats. These AChE alterations could suggest a role in the memory impairment promoted by cigarette smoke-exposure and point toward the potential of Cur to modulate cholinergic neurotransmission and, consequently, improve cognition deficits induced by smoke. This study suggests that the dietary compound Cur may be involved in cholinergic system modulation and as a consequence exert an effect on learning and memory.


Analytical Biochemistry | 2011

A method for isolation of rat lymphocyte-rich mononuclear cells from lung tissue useful for determination of nucleoside triphosphate diphosphohydrolase activity

Jeandre Augusto dos Santos Jaques; João Felipe Peres Rezer; Jader B. Ruchel; Jessié M. Gutierres; André Valle de Bairros; Iria Luiza Gomes Farias; Sônia Cristina Almeida da Luz; Claudia de Mello Bertoncheli; Maria Rosa Chitolina Schetinger; Vera Maria Morsch; Daniela Bitencourt Rosa Leal

Methods for the isolation of peripheral blood mononuclear cells (PBMCs) and human lung mononuclear cells (LMCs) have been proposed previously. This study describes a method that allows the separation of lymphocyte-rich LMCs from rats. Trypan blue was applied to determine cell viability. White blood cell and differential cell counts were also performed. Relationships between nucleoside triphosphate diphosphohydrolase (NTPDase, EC 3.6.1.5) activities expressed in milligrams of protein, millions of cells, and millions of viable cells were examined as linear correlations. The lung tissue yielded 82.46% lymphocytes, 8.6% macrophages, 2.20% monocytes, and 1.27% polymorphonuclear cells (PMNs). In LMCs, a very strong correlation was observed as follows: between NTPDase activity, as determined using ATP or ADP as a substrate, expressed in milligrams of protein and that expressed in millions of cells (r ≥ 0.91), between that expressed in milligrams of protein and that expressed in millions of viable cells (r ≥ 0.91), and between that expressed in millions of cells and that expressed in millions of viable cells (r ≥ 0.98). Based on our results, we affirm that NTPDase activity could be expressed in millions of viable cells, millions of cells, or milligrams of protein.


Cell Biochemistry and Function | 2013

Physical training prevents oxidative stress in L-NAME-induced hypertension rats

Andréia Machado Cardoso; Caroline Curry Martins; Fernando da Silva Fiorin; Roberta Schmatz; Fátima H. Abdalla; Jessié M. Gutierres; Daniela Zanini; Amanda Maino Fiorenza; Naiara Stefanello; Jonas Daci da Silva Serres; Fabiano B. Carvalho; Verônica Souza Paiva Castro; Cinthia M. Mazzanti; Luiz Fernando Freire Royes; Adriane Belló-Klein; Jeferson Ferraz Goularte; Vera Maria Morsch; Margarete Dulce Bagatini; Maria Rosa Chitolina Schetinger

The present study investigated the effects of a 6‐week swimming training on blood pressure, nitric oxide (NO) levels and oxidative stress parameters such as protein and lipid oxidation, antioxidant enzyme activity and endogenous non‐enzymatic antioxidant content in kidney and circulating fluids, as well as on serum biochemical parameters (cholesterol, triglycerides, urea and creatinine) from Nω‐nitro‐L‐arginine methyl ester hydrochloride (L‐NAME)‐induced hypertension treated rats. Animals were divided into four groups (n = 10): Control, Exercise, L‐NAME and Exercise L‐NAME. Results showed that exercise prevented a decrease in NO levels in hypertensive rats (P < 0·05). An increase in protein and lipid oxidation observed in the L‐NAME‐treated group was reverted by physical training in serum from the Exercise L‐NAME group (P < 0·05). A decrease in the catalase (CAT) and superoxide dismutase (SOD) activities in the L‐NAME group was observed when compared with normotensive groups (P < 0·05). In kidney, exercise significantly augmented the CAT and SOD activities in the Exercise L‐NAME group when compared with the L‐NAME group (P < 0·05). There was a decrease in the non‐protein thiols (NPSH) levels in the L‐NAME‐treated group when compared with the normotensive groups (P < 0·05). In the Exercise L‐NAME group, there was an increase in NPSH levels when compared with the L‐NAME group (P < 0·05). The elevation in serum cholesterol, triglycerides, urea and creatinine levels observed in the L‐NAME group were reverted to levels close to normal by exercise in the Exercise L‐NAME group (P < 0·05). Exercise training had hypotensive effect, reducing blood pressure in the Exercise L‐NAME group (P < 0·05). These findings suggest that physical training could have a protector effect against oxidative damage and renal injury caused by hypertension. Copyright


Evidence-based Complementary and Alternative Medicine | 2012

Uncaria tomentosa-Adjuvant Treatment for Breast Cancer: Clinical Trial.

Maria do Carmo Araújo; Iria Luiza Gomes Farias; Jessié M. Gutierres; Sérgio Luiz Dalmora; Nélia Flores; Júlia Gomes Farias; Ivana de Cruz; Juarez Chiesa; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

Breast cancer is the most frequent neoplasm affecting women worldwide. Some of the recommended treatments involve chemotherapy whose toxic effects include leukopenia and neutropenia. This study assessed the effectiveness of Uncaria tomentosa (Ut) in reducing the adverse effects of chemotherapy through a randomized clinical trial. Patients with Invasive Ductal Carcinoma—Stage II, who underwent a treatment regimen known as FAC (Fluorouracil, Doxorubicin, Cyclophosphamide), were divided into two groups: the UtCa received chemotherapy plus 300 mg dry Ut extract per day and the Ca group that only received chemotherapy and served as the control experiment. Blood samples were collected before each one of the six chemotherapy cycles and blood counts, immunological parameters, antioxidant enzymes, and oxidative stress were analyzed. Uncaria tomentosa reduced the neutropenia caused by chemotherapy and was also able to restore cellular DNA damage. We concluded that Ut is an effective adjuvant treatment for breast cancer.

Collaboration


Dive into the Jessié M. Gutierres's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Maria Morsch

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Fabiano B. Carvalho

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Roberta Schmatz

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Roselia Maria Spanevello

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Cinthia M. Mazzanti

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Maribel Antonello Rubin

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Naiara Stefanello

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Juliano Marchi Vieira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Daniela Zanini

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge