Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naiara Stefanello is active.

Publication


Featured researches published by Naiara Stefanello.


European Journal of Pharmacology | 2009

Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats

Roberta Schmatz; Cinthia M. Mazzanti; Roselia Maria Spanevello; Naiara Stefanello; Jessié M. Gutierres; Maísa Corrêa; Michelle Melgarejo da Rosa; Maribel Antonello Rubin; Maria Rosa Chitolina Schetinger; Vera Maria Morsch

The objective of the present study was to investigate the effect of the administration of resveratrol (RV) on memory and on acetylcholinesterase (AChE) activity in the cerebral cortex, hippocampus, striatum, hypothalamus, cerebellum and blood in streptozotocin-induced diabetic rats. The animals were divided into six groups (n=6-13): Control/saline; Control/RV 10 mg/kg; Control/RV 20 mg/kg; Diabetic/saline; Diabetic/RV 10 mg/kg; Diabetic/RV 20 mg/kg. One day after 30 days of treatment with resveratrol the animals were submitted to behavioral tests and then submitted to euthanasia and the brain structures and blood were collected. The results showed a decrease in step-down latency in diabetic/saline group. Resveratrol (10 and 20 mg/kg) prevented the impairment of memory induced by diabetes. In the open field test, no significant differences were observed between the groups. In relation to AChE activity, a significant increase in diabetic/saline group (P<0.05) was observed in all brain structures compared to control/saline group. However, AChE activity decreased significantly in control/RV10 and control/RV20 (P<0.05) groups in cerebral cortex, hippocampus and striatum, while no significant differences were observed in diabetic/RV10 and diabetic/RV20 groups in all brain structures compared to control/saline group. Blood AChE activity increased significantly in diabetic/saline group (P<0.05) decreased in control/RV10, control/RV20 and diabetic/RV20 groups (P<0.05) compared to control/saline group. In conclusion, the present findings showed that treatment with resveratrol prevents the increase in AChE activity and consequently memory impairment in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and consequently improve cognition.


Chemico-Biological Interactions | 2010

N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium

Jamile F. Gonçalves; Amanda Maino Fiorenza; Roselia Maria Spanevello; Cinthia M. Mazzanti; Guilherme Vargas Bochi; Fabiane G. Antes; Naiara Stefanello; Maribel Antonello Rubin; Valderi L. Dressler; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

The present study investigated the effect of the administration of N-acetylcysteine (NAC), on memory, on acetylcholinesterase (AChE) activity and on lipid peroxidation in different brain structures in cadmium (Cd)-exposed rats. The rats received Cd (2 mg/kg) and NAC (150 mg/kg) by gavage every other day for 30 days. The animals were divided into four groups (n=12-13): control/saline, NAC, Cd, and Cd/NAC. The results showed a decrease in step-down latency in the Cd-group, but NAC reversed the impairment of memory induced by Cd intoxication. Rats exposed to Cd and/or treated with NAC did not demonstrate altered shock sensitivity. Decreased AChE activity was found in hippocampus, cerebellum and hypothalamus in the Cd-group but NAC reversed this effect totally or partially while in cortex synaptosomes and striatum there was no alteration in AChE activity. An increase in TBARS levels was found in hippocampus, cerebellum and hypothalamus in the Cd-group and NAC abolished this effect while in striatum there was no alteration in TBARS levels. Urea and creatinine levels were increased in serum of Cd-intoxicated rats, but NAC was able to abolish these undesirable effects. The present findings show that treatment with NAC prevented the Cd-mediated decrease in AChE activity, as well as oxidative stress and consequent memory impairment in Cd-exposed rats, demonstrating that this compound may modulate cholinergic neurotransmission and consequently improve cognition. However, it is necessary to note that the mild renal failure may be a contributor to the behavioral impairment found in this investigation.


International Journal of Developmental Neuroscience | 2009

Pre-treatment with ebselen and vitamin E modulate acetylcholinesterase activity: interaction with demyelinating agents

Cinthia Melazzo Mazzanti; Roselia Spanevello; Musthaq Ahmed; Luciane Belmonte Pereira; Jamile F. Gonçalves; Maísa Corrêa; Roberta Schmatz; Naiara Stefanello; Daniela Bitencourt Rosa Leal; Alexandre Mazzanti; Adriano Tony Ramos; Tessie Beck Martins; Cristiane Cademartori Danesi; Dominguita Lühers Graça; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

The ethidium bromide (EB) demyelinating model was associated with vitamin E (Vit E) and ebselen (Ebs) treatment to evaluate acetylcholinesterase (AChE) activity in the striatum (ST), hippocampus (HP), cerebral cortex (CC) and erythrocytes. Rats were divided into seven groups: I—Control (saline), II—(canola); III—(Ebs), IV—(Vit E); V—(EB); VI—(EB + Ebs) and VII—(EB + Vit E). At 3 days after the EB injection, AChE activity in the CC and HC was significantly reduced in groups III, IV, V, VI and VII (p < 0.05) and in the ST it was reduced in groups III and V (p < 0.05) when compared to the control group. At 21 days after the EB injection, AChE activity in the CC was significantly reduced in groups III, IV and V, while in groups VI and VII a significant increase was observed when compared to the control group. In the HC and ST, AChE activity was significantly reduced in groups V, VI and VII when compared to the control group (p < 0.05). In the erythrocytes, at 3 days after the EB injection, AChE activity was significantly reduced in groups III, IV, V, VI and VII and at 21 days there was a significant reduction only in groups VI and VII (p < 0.05) when compared to the control group. In conclusion, this study demonstrated that Ebs and Vit E interfere with the cholinergic neurotransmission by altering AChE activity in the different brain regions and in the erythrocytes. Furthermore, treatment with Vit E and Ebs protected against the demyelination lesion caused by EB. In this context, we can suggest that ebselen and Vit E should be considered potential therapeutics and scientific tools to be investigated in brain disorders associated with demyelinating events.


Pharmacology, Biochemistry and Behavior | 2012

Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats

Javed Anwar; Roselia Maria Spanevello; Gustavo R. Thomé; Naiara Stefanello; Roberta Schmatz; Jessié M. Gutierres; Juliano Marchi Vieira; Jucimara Baldissarelli; Fabiano B. Carvalho; Michelle Melgarejo da Rosa; Maribel Antonello Rubin; Amanda Maino Fiorenza; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

Acetylcholinesterase (AChE) is distributed throughout the body in both neuronal and non-neuronal tissues and plays an important role in the regulation of physiological events. Caffeic acid is a phenolic compound that has anti-inflammatory and neuroprotective properties. The aim of this study was to investigate in vitro and in vivo whether caffeic acid alters the AChE activity and behavioral parameters in rats. In the in vitro study, the concentrations of 0, 0.1, 0.5, 1.0, 1.5, and 2mM of caffeic acid were used. For the in vivo study, five groups were evaluated: group I (control); group II (canola oil), group III (10mg/kg of caffeic acid); group IV (50mg/kg of caffeic acid) and group V (100mg/kg of caffeic acid). Caffeic acid was diluted in canola oil and administered for 30 days. In vitro, the caffeic acid increased the AChE activity in the cerebral cortex, cerebellum, hypothalamus, whole blood, and lymphocytes at different concentrations. In muscle, this compound caused an inhibition in the AChE activity at concentrations of 0.5, 1.0, 1.5, and 2mM when compared to the control (P<0.05). In vivo, 50 and 100mg/kg of caffeic acid decreased the AChE activity in the cerebral cortex and striatum and increased the activity of this enzyme in the cerebellum, hippocampus, hypothalamus, pons, lymphocytes, and muscles when compared to the control group (P<0.05). The amount of 100mg/kg of caffeic acid improved the step-down latencies in the inhibitory avoidance. Our results demonstrated that caffeic acid improved memory and interfered with the cholinergic signaling. As a natural and promising compound caffeic acid should be considered potentially therapeutic in disorders that involve the cholinergic system.


Clinica Chimica Acta | 2010

The activity and expression of NTPDase is altered in lymphocytes of multiple sclerosis patients

Roselia Spanevello; Cinthia M. Mazzanti; Roberta Schmatz; Gustavo R. Thomé; Margarete Dulce Bagatini; Maísa Corrêa; Cíntia Saydelles da Rosa; Naiara Stefanello; Luziane Potrich Bellé; Maria Beatriz Moretto; Liliane Oliveira; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

BACKGROUND Multiple sclerosis (MS) is a demyelinating neurological disease, which is presumed to be a consequence of infiltrating lymphocytes that are autoreactive to myelin proteins. ATP and adenosine contribute to fine-tuning immune responses and NTPDase (CD39) and adenosine deaminase (ADA) are important enzymes in the control of the extracellular levels of these molecules at the site of inflammation. We evaluated the activity and expression of NTPDase and adenosine deaminase (ADA) activity in lymphocytes from patients with the relapsing-remitting form of MS (RRMS). METHODS This study involved 22 patients with RRMS and 22 healthy subjects as a control group. The lymphocytes were isolated from blood and separated on Ficoll density gradients and after isolation the NTPDase and ADA activities were determined. RESULTS The NTPDase activity and expression were increased in lymphocytes from RRMS patients when compared with the control group (p<0.05). In addition, a decrease in ADA activity was observed in lymphocytes from these patients when compared to the control group (p<0.05). CONCLUSIONS The regulation of ATP and adenosine levels by NTPDase and ADA activities may be important to preserve cellular integrity and to modulate the immune response in MS.


Cell Biochemistry and Function | 2014

Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats.

Nadia Mushtaq; Roberta Schmatz; Luciane Belmonte Pereira; Mushtaq Ahmad; Naiara Stefanello; Juliano Marchi Vieira; Fátima H. Abdalla; Marília V. Rodrigues; Jucimara Baldissarelli; Luana Paula Pelinson; Diéssica Dalenogare; Karine Paula Reichert; Eduardo M. Dutra; Nadia Mulinacci; Marzia Innocenti; Maria Bellumori; Vera Maria Morsch; Maria Rosa Chitolina Schetinger

We investigated the efficacy of rosmarinic acid (RA) in preventing lipid peroxidation and increased activity of acetylcholinesterase (AChE) in the brain of streptozotocin‐induced diabetic rats. The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol and diabetic/RA 10 mg/kg. After 21 days of treatment with RA, the cerebral structures (striatum, cortex and hippocampus) were removed for experimental assays. The results demonstrated that the treatment with RA (10 mg/kg) significantly reduced the level of lipid peroxidation in hippocampus (28%), cortex (38%) and striatum (47%) of diabetic rats when compared with the control. In addition, it was found that hyperglycaemia caused significant increased in the activity of AChE in hippocampus (58%), cortex (46%) and striatum (30%) in comparison with the control. On the other hand, the treatment with RA reversed this effect to the level of control after 3 weeks. In conclusion, the present findings showed that treatment with RA prevents the lipid peroxidation and consequently the increase in AChE activity in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and prevent damage oxidative in brain in the diabetic state. Thus, we can suggest that RA could be a promising compound in the complementary therapy in diabetes. Copyright


Research in Veterinary Science | 2013

Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats

Roberto Marinho Maciel; Mateus Matiuzzi da Costa; D.B. Martins; Raqueli T. França; Roberta Schmatz; Dominguita Lühers Graça; Marta Maria Medeiros Frescura Duarte; C.C. Danesi; Cinthia M. Mazzanti; Maria Rosa Chitolina Schetinger; Francine C. Paim; Heloisa Einloft Palma; F.H. Abdala; Naiara Stefanello; C.K. Zimpel; D.V. Felin; Sonia Terezinha dos Anjos Lopes

The aim of this study was to investigate functional and morphological alterations caused by oxidative stress in streptozotocin (STZ)-induced diabetic rats and to evaluate the antioxidant effect of quercetin (QUE) in this disease. One hundred and thirty male Wistar rats, it were randomly distributed in 10 different experimental groups, with ten animals per group: Control Saline (CS), Control Ethanol (CE), Control QUE 5mg/kg (CQ5), Control QUE 25mg/kg (CQ25), Control QUE 50mg/kg (CQ50), Diabetic Saline (DS), Diabetic Ethanol (DE), Diabetic QUE 5mg/kg (DQ5), Diabetic QUE25 mg/kg (DQ25), Diabetic QUE 50mg/kg (DQ50). Therefore, hyperglycemia is directly involved in oxidative stress production, as well as in functional and morphological alterations caused by the excess of free radicals. QUE, specially at the dosage of 50mg/kg, can act as an antioxidant and anti-inflammatory agent, becoming a promising adjuvant in the treatment of diabetes mellitus.


Cell Biochemistry and Function | 2013

Physical training prevents oxidative stress in L-NAME-induced hypertension rats

Andréia Machado Cardoso; Caroline Curry Martins; Fernando da Silva Fiorin; Roberta Schmatz; Fátima H. Abdalla; Jessié M. Gutierres; Daniela Zanini; Amanda Maino Fiorenza; Naiara Stefanello; Jonas Daci da Silva Serres; Fabiano B. Carvalho; Verônica Souza Paiva Castro; Cinthia M. Mazzanti; Luiz Fernando Freire Royes; Adriane Belló-Klein; Jeferson Ferraz Goularte; Vera Maria Morsch; Margarete Dulce Bagatini; Maria Rosa Chitolina Schetinger

The present study investigated the effects of a 6‐week swimming training on blood pressure, nitric oxide (NO) levels and oxidative stress parameters such as protein and lipid oxidation, antioxidant enzyme activity and endogenous non‐enzymatic antioxidant content in kidney and circulating fluids, as well as on serum biochemical parameters (cholesterol, triglycerides, urea and creatinine) from Nω‐nitro‐L‐arginine methyl ester hydrochloride (L‐NAME)‐induced hypertension treated rats. Animals were divided into four groups (n = 10): Control, Exercise, L‐NAME and Exercise L‐NAME. Results showed that exercise prevented a decrease in NO levels in hypertensive rats (P < 0·05). An increase in protein and lipid oxidation observed in the L‐NAME‐treated group was reverted by physical training in serum from the Exercise L‐NAME group (P < 0·05). A decrease in the catalase (CAT) and superoxide dismutase (SOD) activities in the L‐NAME group was observed when compared with normotensive groups (P < 0·05). In kidney, exercise significantly augmented the CAT and SOD activities in the Exercise L‐NAME group when compared with the L‐NAME group (P < 0·05). There was a decrease in the non‐protein thiols (NPSH) levels in the L‐NAME‐treated group when compared with the normotensive groups (P < 0·05). In the Exercise L‐NAME group, there was an increase in NPSH levels when compared with the L‐NAME group (P < 0·05). The elevation in serum cholesterol, triglycerides, urea and creatinine levels observed in the L‐NAME group were reverted to levels close to normal by exercise in the Exercise L‐NAME group (P < 0·05). Exercise training had hypotensive effect, reducing blood pressure in the Exercise L‐NAME group (P < 0·05). These findings suggest that physical training could have a protector effect against oxidative damage and renal injury caused by hypertension. Copyright


Biomedicine & Pharmacotherapy | 2016

Neuroprotective effects of quercetin on memory and anxiogenic-like behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities

Roberto Marinho Maciel; Fabiano B. Carvalho; Ayodeji A. Olabiyi; Roberta Schmatz; Jessié M. Gutierres; Naiara Stefanello; Daniela Zanini; Michelle Melgarejo da Rosa; Cinthia M. Andrade; Maribel Antonello Rubin; Maria Rosa Chitolina Schetinger; Vera Maria Morsch; Cristiane Cademartori Danesi; Sonia Terezinha dos Anjos Lopes

The present study investigated the protective effect of quercetin (Querc) on memory, anxiety-like behavior and impairment of ectonucleotidases and acetylcholinesterase (AChE) activities in brain of streptozotocin-induced diabetic rats (STZ-diabetes). The type 1 diabetes mellitus was induced by an intraperitoneal injection of 70mg/kg of streptozotocin (STZ), diluted in 0.1M sodium-citrate buffer (pH 4.5). Querc was dissolved in 25% ethanol and administered by gavage at the doses of 5, 25 and 50mg/kg once a day during 40days. The animals were distributed in eight groups of ten animals as follows: vehicle, Querc 5mg/kg, Querc 25mg/kg, Querc 50mg/kg, diabetes, diabetes plus Querc 5mg/kg, diabetes plus Querc 25mg/kg and diabetes plus Querc 50mg/kg. Querc was able to prevent the impairment of memory and the anxiogenic-like behavior induced by STZ-diabetes. In addition, Querc prevents the decrease in the NTPDase and increase in the adenosine deaminase (ADA) activities in SN from cerebral cortex of STZ-diabetes. STZ-diabetes increased the AChE activity in SN from cerebral cortex and hippocampus. Querc 50mg/kg was more effective to prevent the increase in AChE activity in the brain of STZ-diabetes. Querc also prevented an increase in the malondialdehyde levels in all the brain structures. In conclusion, the present findings showed that Querc could prevent the impairment of the enzymes that regulate the purinergic and cholinergic extracellular signaling and improve the memory and anxiety-like behavior induced by STZ-diabetes.


Biomedicine & Pharmacotherapy | 2012

Nicotine alters the ectonucleotidases activities in lymphocytes: In vitro and in vivo studies

Gustavo R. Thomé; Lizielle Souza de Oliveira; Maria Rosa Chitolina Schetinger; Vera Maria Morsch; Roselia Maria Spanevello; Amanda Maino Fiorenza; Jonas Seres; Jucimara Baldissarelli; Naiara Stefanello; Maria Ester Pereira; Nicéia Spanholi Calgaroto; Victor Camera Pimentel; Daniela Bitencourt Rosa Leal; Viviane do Carmo Gonçalves Souza; Jeandre Augusto dos Santos Jaques; Claudio A.M. Leal; Ritiel Corrêa da Cruz; Flávia Valladão Thiesen; Cinthia M. Mazzanti

The aim of the present study was to investigate the effects in vivo and in vitro of nicotine, an important immunosuppressive agent, on NTPDase and ADA activities in lymphocytes of adult rats. The following nicotine doses in vivo study were evaluated: 0.0, 0.25 and 1.0mg/kg/day injected subcutaneously in rats for 10days. The activity of the enzymes were significantly decreased with nicotine 0.25 and 1mg/kg which inhibited ATP (22%, 54%), ADP (44%, 30%) hydrolysis and adenosine (43%, 34%) deamination, respectively. The expression of the protein NTPDase in rat lymphocytes was decreased to nicotine 1mg/kg and the lymphocytes count was decreased in both nicotine doses studied. The purine levels measured in serum of the rats treated with nicotine 0.25mg/kg significantly increased to ATP (39%), ADP (39%) and adenosine (303%). The nicotine exposure marker was determinate by level of cotinine level which significantly increased in rats treated with nicotine 0.25 (39%) and 1mg/kg (131%) when compared to rats that received only saline. The second set of study was in vitro assay which the ATP-ADP-adenosine hydrolysis were decreased by nicotine concentrations 1mM (0% - 0% - 16%, respectively), 5mM (42% - 32% - 74%, respectively), 10mM (80% - 27% - 80%, respectively) and 50mM (96% - 49% - 98%, respectively) when compared with the control group. We suggest that alterations in the activities of these enzymes may contribute to the understanding of the mechanisms involved in the suppression of immune response caused by nicotine.

Collaboration


Dive into the Naiara Stefanello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Maria Morsch

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Roberta Schmatz

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Cinthia M. Mazzanti

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Jessié M. Gutierres

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Roselia Maria Spanevello

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Andréia Machado Cardoso

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Gustavo R. Thomé

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Fabiano B. Carvalho

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Margarete Dulce Bagatini

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge