Jessy Loranger
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessy Loranger.
Ecology | 2013
Alexandru Milcu; Eric Allan; Christiane Roscher; Tania Jenkins; Sebastian T. Meyer; Dan F. B. Flynn; Holger Bessler; François Buscot; Christof Engels; Marlén Gubsch; Stephan König; Annett Lipowsky; Jessy Loranger; Carsten Renker; Christoph Scherber; Bernhard Schmid; Elisa Thébault; Tesfaye Wubet; Wolfgang W. Weisser; Stefan Scheu; Nico Eisenhauer
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant functional trait and phylogenetic diversity as predictors of major trophic groups of soil biota (abundance and diversity), six years from the onset of a grassland biodiversity experiment. Plant functional and phylogenetic diversity were generally better predictors of soil biota than the traditionally used species or functional group richness. Functional diversity was a reliable predictor for most biota, with the exception of soil microorganisms, which were better predicted by phylogenetic diversity. These results provide empirical support for the idea that the diversity of plant functional traits and the diversity of evolutionary lineages in a community are important for maintaining higher abundances and diversity of soil communities.
Ecology | 2012
Jessy Loranger; Sebastian T. Meyer; Bill Shipley; Jens Kattge; Hannah Loranger; Christiane Roscher; Wolfgang W. Weisser
Invertebrate herbivores can impact plant performance and plant communities. Conversely, plants can affect the ability of herbivores to find, choose, and consume them through their functional traits. While single plant traits have been related to rates of herbivory, most often involving single herbivore-plant pairs, much less is known about which suite of plant traits is important for determining herbivory for a pool of plant species interacting with a natural herbivore community. In this study we measured aboveground herbivore damage on 51 herbaceous species growing in monocultures of a grassland biodiversity experiment and collected 42 different plant traits representing four trait groups: physiological, morphological, phenological, and herbivore related. Using the method of random forests and multiple regression, we identified seven traits that are important predictors of herbivore damage (leaf nitrogen and lignin concentration, number of coleopteran and hemipteran herbivores potentially feeding on the plants, leaf life span, stem growth form, and root architecture); leaf nitrogen and lignin concentration were the two most important predictors. The final model accounted for 63% of the variation in herbivore damage. Traits from all four trait groups were selected, showing that a variety of plant characteristics can be statistically important when assessing folivory, including root traits. Our results emphasize that it is necessary to use a multivariate approach for identifying traits affecting complex ecological processes such as herbivory.
Oecologia | 2014
Hannah Loranger; Wolfgang W. Weisser; Anne Ebeling; Till Eggers; Enrica De Luca; Jessy Loranger; Christiane Roscher; Sebastian T. Meyer
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.
Botany | 2010
Jessy Loranger; Bill Shipley
Despite the importance of stomata in leaf functioning, and despite the recent interest in interspecific leaf trait covariation in functional ecology, little is known about how stomatal density relates to other leaf traits in a broad interspecific context. This is especially important because stomatal density has been widely used to deduce temporal variation in atmospheric CO2 concentrations [CO2atm] from fossilized or herbarium leaves. We therefore measured stomatal density, specific leaf area (SLA) and its components, leaf thickness, and leaf chlorophyll content in both sun and shade leaves of 169 individuals from 52 angiosperm species in southwestern Quebec. Using mixed models, we show that stomatal density decreases allometrically with increasing SLA and chlorophyll content, and increases allometrically with increasing lamina thickness. The sun–shade contrast changes the intercepts, but not the slopes, of these relationships. It is important to take into consideration these relations when correlating s...
Science of The Total Environment | 2015
Cyrille Violle; Philippe Choler; Benjamin Borgy; Eric Garnier; Bernard Amiaud; Guilhem Debarros; Sylvain Diquélou; Sophie Gachet; Claudy Jolivet; Jens Kattge; Sandra Lavorel; Servane Lemauviel-Lavenant; Jessy Loranger; Alexis Mikolajczak; François Munoz; Jean Olivier; Nicolas Viovy
The effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography. While the rise of Big Data has catalysed functional biogeography studies in recent years, comprehensive evidence remains scarce. Here, we present the rationale and the first results of a country-wide initiative focused on the C3 permanent grasslands. We aimed to collate, integrate and process large databases of vegetation relevés, plant traits and environmental layers to provide a country-wide assessment of ecosystem properties and services which can be used to improve regional models of climate and land use changes. We outline the theoretical background, data availability, and ecoinformatics challenges associated with the approach and its feasibility. We provide a case study of upscaling of leaf dry matter content averaged at ecosystem level and country-wide predictions of forage digestibility. Our framework sets milestones for further hypothesis testing in functional biogeography and earth system modelling.
American Journal of Botany | 2016
Jessy Loranger; Benjamin Blonder; Eric Garnier; Bill Shipley; Denis Vile; Cyrille Violle
PREMISE OF THE STUDY Secondary succession is a worldwide phenomenon affecting plant communities. Studying functional variation during succession aids in understanding the mechanisms through which environmental shifts drive succession. We investigated changes in the functional space occupied by herbaceous communities during succession. Furthermore, since different traits are differently affected by environmental conditions, we asked how considering different sets of plant traits impacts those changes. METHODS Using a chronosequence of Mediterranean old fields (2-42 yr after abandonment), we analyzed shifts of the occupied functional space during succession, how the volume of occupied functional space varies compared with null expectations, and the functional overlap between communities of different successional status. We repeated these analyses considering (1) the leaf-height-seed functional dimensions separately and together and (2) different sets of traits representing those dimensions. KEY RESULTS From early to late succession, a shift toward nutrient conservative-light competitive species occurred. Functional strategies of mid-successional communities appeared more diverse than expected by chance and less diverse than expected for early and late communities. Early and middle stages overlapped the most. These patterns were generally robust to the choice of functional axes, though important trait-specific exceptions occurred. CONCLUSIONS We showed evidence for a well-defined history of successive dominance of different assembly mechanisms along succession, resulting in a generally stronger functional diversification in mid-succession. We also demonstrated that different traits typically grouped under one functional dimension can substantially affect the results, discouraging the use of surrogate traits from the same dimension.
Journal of Ecology | 2016
Jessy Loranger; Cyrille Violle; Bill Shipley; Sandra Lavorel; Anne Bonis; Pablo Cruz; Frédérique Louault; Grégory Loucougaray; François Mesléard; Nicole Yavercovski; Eric Garnier
1. According to the dynamic equilibrium hypothesis (DEH), plant species richness is locally controlled by productivity and disturbance. Given that regional conditions widely affect local environmental variables such as soil nutrient availability, the DEH predictions could be improved by considering how climate influences local controls of species richness. Further, a trait-based approach to community assembly has the potential to reveal a deeper, mechanistic understanding of species richness variation across environments. Here, we bring together DEH and trait-based community assembly expectations to examine whether and how local relationships between diversity, disturbance and productivity are affected by habitat filtering and regional climate. 2. We specifically tested how gradients of local nutrient availability and disturbance intensity interact with climatic conditions to drive the species richness of grassland communities. Further, we recast the DEH through a functional lens by exploring how disturbance–diversity and nutrient availability–diversity relationships are shaped by the functional space occupied by species in a community and species packing within this functional space. 3. The functional space occupied by co-occurring species and the way they are functionally packed are quantified using multi-trait indices calculated with five core plant functional traits. Working with grassland communities spread across differing regional climatic conditions, we used mixed models to test whether the variation in taxonomic and functional metrics corresponded to the DEH predictions as well as to determine the relationship between those metrics. 4. Contrary to the expectations based on the relation between species richness and the functional components considered, taxonomic and functional metrics did not vary in accordance along environmental gradients. Climate strongly interacted with the local environment to modulate local diversity patterns, sometimes even inversing a given trend and falsifying the DEH predictions. 5. Synthesis. Our findings quantitatively highlight the interplay between regional and local environmental gradients in driving community assembly. We demonstrate that, depending on climatic conditions, observed patterns of both taxonomic and functional community composition can be opposite to expected productivity–diversity and disturbance–diversity relationships. This emphasizes the relevance of multifaceted studies of biodiversity and the need for a more systematic quantification of regional controls in community assembly studies.
Ecology | 2013
Jessy Loranger; Sebastian T. Meyer; Bill Shipley; Jens Kattge; Hannah Loranger; Christiane Roscher; Christian Wirth; Wolfgang W. Weisser
Global Ecology and Biogeography | 2017
Benjamin Borgy; Cyrille Violle; Philippe Choler; Pierre Denelle; François Munoz; Jens Kattge; Sandra Lavorel; Jessy Loranger; Bernard Amiaud; Michael Bahn; Peter M. van Bodegom; Henry Brisse; Guilhem Debarros; Sylvain Diquélou; Sophie Gachet; Claudy Jolivet; Servane Lemauviel-Lavenant; Alexis Mikolajczak; Jean Olivier; Jenny C. Ordoñez; Patrice De Ruffray; Nicolas Viovy; Eric Garnier
Oikos | 2018
Jessy Loranger; François Munoz; Bill Shipley; Cyrille Violle