Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesús Alberto Garrido is active.

Publication


Featured researches published by Jesús Alberto Garrido.


International Journal of Neural Systems | 2011

ADAPTIVE CEREBELLAR SPIKING MODEL EMBEDDED IN THE CONTROL LOOP: CONTEXT SWITCHING AND ROBUSTNESS AGAINST NOISE

Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Silvia Tolu; Eduardo Ros

This work evaluates the capability of a spiking cerebellar model embedded in different loop architectures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom) using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity (long-term potentiation and long-term depression) to adapt and cope with perturbations in the manipulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on the employed control architecture. The implemented cerebellar model managed to adapt in the three control architectures to different dynamics and kinematics providing corrective actions for more accurate movements. According to the obtained results, coupling both control architectures (forward&recurrent) provides benefits of the two of them and leads to a higher robustness against noise.


Frontiers in Neural Circuits | 2013

Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation

Jesús Alberto Garrido; Niceto R. Luque; Egidio D'Angelo; Eduardo Ros

Adaptable gain regulation is at the core of the forward controller operation performed by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely tuned in a predictive manner. In order to learn and store information about body-object dynamics and to generate an internal model of movement, the cerebellum is thought to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been assumed to subserve this function (Marr, 1969). However, this plasticity alone cannot account for the broad dynamic ranges and time scales of cerebellar adaptation. We therefore tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum. The incorporation of further plasticity mechanisms and of spiking signal processing will allow this concept to be extended in a more realistic computational scenario.


PLOS ONE | 2014

Adaptive robotic control driven by a versatile spiking cerebellar network.

Claudia Casellato; Alberto Antonietti; Jesús Alberto Garrido; Richard R. Carrillo; Niceto R. Luque; Eduardo Ros; Alessandra Pedrocchi; Egidio D'Angelo

The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.


The Cerebellum | 2016

Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning

Egidio D’Angelo; Lisa Mapelli; Claudia Casellato; Jesús Alberto Garrido; Niceto R. Luque; Jessica Monaco; Francesca Prestori; Alessandra Pedrocchi; Eduardo Ros

The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber–Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.


Frontiers in Computational Neuroscience | 2013

Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study

Jesús Alberto Garrido; Eduardo Ros; Egidio D’Angelo

The way long-term synaptic plasticity regulates neuronal spike patterns is not completely understood. This issue is especially relevant for the cerebellum, which is endowed with several forms of long-term synaptic plasticity and has been predicted to operate as a timing and a learning machine. Here we have used a computational model to simulate the impact of multiple distributed synaptic weights in the cerebellar granular-layer network. In response to mossy fiber (MF) bursts, synaptic weights at multiple connections played a crucial role to regulate spike number and positioning in granule cells. The weight at MF to granule cell synapses regulated the delay of the first spike and the weight at MF and parallel fiber to Golgi cell synapses regulated the duration of the time-window during which the first-spike could be emitted. Moreover, the weights of synapses controlling Golgi cell activation regulated the intensity of granule cell inhibition and therefore the number of spikes that could be emitted. First-spike timing was regulated with millisecond precision and the number of spikes ranged from zero to three. Interestingly, different combinations of synaptic weights optimized either first-spike timing precision or spike number, efficiently controlling transmission and filtering properties. These results predict that distributed synaptic plasticity regulates the emission of quasi-digital spike patterns on the millisecond time-scale and allows the cerebellar granular layer to flexibly control burst transmission along the MF pathway.


systems man and cybernetics | 2011

Cerebellarlike Corrective Model Inference Engine for Manipulation Tasks

Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Olivier J.-M. D. Coenen; Eduardo Ros

This paper presents how a simple cerebellumlike architecture can infer corrective models in the framework of a control task when manipulating objects that significantly affect the dynamics model of the system. The main motivation of this paper is to evaluate a simplified bio-mimetic approach in the framework of a manipulation task. More concretely, the paper focuses on how the model inference process takes place within a feedforward control loop based on the cerebellar structure and on how these internal models are built up by means of biologically plausible synaptic adaptation mechanisms. This kind of investigation may provide clues on how biology achieves accurate control of non-stiff-joint robot with low-power actuators which involve controlling systems with high inertial components. This paper studies how a basic temporal-correlation kernel including long-term depression (LTD) and a constant long-term potentiation (LTP) at parallel fiber-Purkinje cell synapses can effectively infer corrective models. We evaluate how this spike-timing-dependent plasticity correlates sensorimotor activity arriving through the parallel fibers with teaching signals (dependent on error estimates) arriving through the climbing fibers from the inferior olive. This paper addresses the study of how these LTD and LTP components need to be well balanced with each other to achieve accurate learning. This is of interest to evaluate the relevant role of homeostatic mechanisms in biological systems where adaptation occurs in a distributed manner. Furthermore, we illustrate how the temporal-correlation kernel can also work in the presence of transmission delays in sensorimotor pathways. We use a cerebellumlike spiking neural network which stores the corrective models as well-structured weight patterns distributed among the parallel fibers to Purkinje cell connections.


Frontiers in Cellular Neuroscience | 2015

Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

Lisa Mapelli; Martina Pagani; Jesús Alberto Garrido; Egidio D’Angelo

The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.


IEEE Transactions on Neural Networks | 2011

Cerebellar Input Configuration Toward Object Model Abstraction in Manipulation Tasks

Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Olivier J.-M. D. Coenen; Eduardo Ros

It is widely assumed that the cerebellum is one of the main nervous centers involved in correcting and refining planned movement and accounting for disturbances occurring during movement, for instance, due to the manipulation of objects which affect the kinematics and dynamics of the robot-arm plant model. In this brief, we evaluate a way in which a cerebellar-like structure can store a model in the granular and molecular layers. Furthermore, we study how its microstructure and input representations (context labels and sensorimotor signals) can efficiently support model abstraction toward delivering accurate corrective torque values for increasing precision during different-object manipulation. We also describe how the explicit (object-related input labels) and implicit state input representations (sensorimotor signals) complement each other to better handle different models and allow interpolation between two already stored models. This facilitates accurate corrections during manipulations of new objects taking advantage of already stored models.


Frontiers in Computational Neuroscience | 2014

Fast convergence of learning requires plasticity between inferior olive and deep cerebellar nuclei in a manipulation task: a closed-loop robotic simulation

Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Egidio D'Angelo; Eduardo Ros

The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network.


Frontiers in Computational Neuroscience | 2015

Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks.

Claudia Casellato; Alberto Antonietti; Jesús Alberto Garrido; Giancarlo Ferrigno; Egidio D'Angelo; Alessandra Pedrocchi

The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.

Collaboration


Dive into the Jesús Alberto Garrido's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Delgado

University of Alicante

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Martino

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge