Niceto R. Luque
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niceto R. Luque.
International Journal of Neural Systems | 2011
Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Silvia Tolu; Eduardo Ros
This work evaluates the capability of a spiking cerebellar model embedded in different loop architectures (recurrent, forward, and forward&recurrent) to control a robotic arm (three degrees of freedom) using a biologically-inspired approach. The implemented spiking network relies on synaptic plasticity (long-term potentiation and long-term depression) to adapt and cope with perturbations in the manipulation scenario: changes in dynamics and kinematics of the simulated robot. Furthermore, the effect of several degrees of noise in the cerebellar input pathway (mossy fibers) was assessed depending on the employed control architecture. The implemented cerebellar model managed to adapt in the three control architectures to different dynamics and kinematics providing corrective actions for more accurate movements. According to the obtained results, coupling both control architectures (forward&recurrent) provides benefits of the two of them and leads to a higher robustness against noise.
Frontiers in Neural Circuits | 2013
Jesús Alberto Garrido; Niceto R. Luque; Egidio D'Angelo; Eduardo Ros
Adaptable gain regulation is at the core of the forward controller operation performed by the cerebro-cerebellar loops and it allows the intensity of motor acts to be finely tuned in a predictive manner. In order to learn and store information about body-object dynamics and to generate an internal model of movement, the cerebellum is thought to employ long-term synaptic plasticity. LTD at the PF-PC synapse has classically been assumed to subserve this function (Marr, 1969). However, this plasticity alone cannot account for the broad dynamic ranges and time scales of cerebellar adaptation. We therefore tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum. The incorporation of further plasticity mechanisms and of spiking signal processing will allow this concept to be extended in a more realistic computational scenario.
PLOS ONE | 2014
Claudia Casellato; Alberto Antonietti; Jesús Alberto Garrido; Richard R. Carrillo; Niceto R. Luque; Eduardo Ros; Alessandra Pedrocchi; Egidio D'Angelo
The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.
The Cerebellum | 2016
Egidio D’Angelo; Lisa Mapelli; Claudia Casellato; Jesús Alberto Garrido; Niceto R. Luque; Jessica Monaco; Francesca Prestori; Alessandra Pedrocchi; Eduardo Ros
The cerebellum is involved in learning and memory of sensory motor skills. However, the way this process takes place in local microcircuits is still unclear. The initial proposal, casted into the Motor Learning Theory, suggested that learning had to occur at the parallel fiber–Purkinje cell synapse under supervision of climbing fibers. However, the uniqueness of this mechanism has been questioned, and multiple forms of long-term plasticity have been revealed at various locations in the cerebellar circuit, including synapses and neurons in the granular layer, molecular layer and deep-cerebellar nuclei. At present, more than 15 forms of plasticity have been reported. There has been a long debate on which plasticity is more relevant to specific aspects of learning, but this question turned out to be hard to answer using physiological analysis alone. Recent experiments and models making use of closed-loop robotic simulations are revealing a radically new view: one single form of plasticity is insufficient, while altogether, the different forms of plasticity can explain the multiplicity of properties characterizing cerebellar learning. These include multi-rate acquisition and extinction, reversibility, self-scalability, and generalization. Moreover, when the circuit embeds multiple forms of plasticity, it can easily cope with multiple behaviors endowing therefore the cerebellum with the properties needed to operate as an effective generalized forward controller.
systems man and cybernetics | 2011
Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Olivier J.-M. D. Coenen; Eduardo Ros
This paper presents how a simple cerebellumlike architecture can infer corrective models in the framework of a control task when manipulating objects that significantly affect the dynamics model of the system. The main motivation of this paper is to evaluate a simplified bio-mimetic approach in the framework of a manipulation task. More concretely, the paper focuses on how the model inference process takes place within a feedforward control loop based on the cerebellar structure and on how these internal models are built up by means of biologically plausible synaptic adaptation mechanisms. This kind of investigation may provide clues on how biology achieves accurate control of non-stiff-joint robot with low-power actuators which involve controlling systems with high inertial components. This paper studies how a basic temporal-correlation kernel including long-term depression (LTD) and a constant long-term potentiation (LTP) at parallel fiber-Purkinje cell synapses can effectively infer corrective models. We evaluate how this spike-timing-dependent plasticity correlates sensorimotor activity arriving through the parallel fibers with teaching signals (dependent on error estimates) arriving through the climbing fibers from the inferior olive. This paper addresses the study of how these LTD and LTP components need to be well balanced with each other to achieve accurate learning. This is of interest to evaluate the relevant role of homeostatic mechanisms in biological systems where adaptation occurs in a distributed manner. Furthermore, we illustrate how the temporal-correlation kernel can also work in the presence of transmission delays in sensorimotor pathways. We use a cerebellumlike spiking neural network which stores the corrective models as well-structured weight patterns distributed among the parallel fibers to Purkinje cell connections.
IEEE Transactions on Neural Networks | 2011
Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Olivier J.-M. D. Coenen; Eduardo Ros
It is widely assumed that the cerebellum is one of the main nervous centers involved in correcting and refining planned movement and accounting for disturbances occurring during movement, for instance, due to the manipulation of objects which affect the kinematics and dynamics of the robot-arm plant model. In this brief, we evaluate a way in which a cerebellar-like structure can store a model in the granular and molecular layers. Furthermore, we study how its microstructure and input representations (context labels and sensorimotor signals) can efficiently support model abstraction toward delivering accurate corrective torque values for increasing precision during different-object manipulation. We also describe how the explicit (object-related input labels) and implicit state input representations (sensorimotor signals) complement each other to better handle different models and allow interpolation between two already stored models. This facilitates accurate corrections during manipulations of new objects taking advantage of already stored models.
Frontiers in Computational Neuroscience | 2014
Niceto R. Luque; Jesús Alberto Garrido; Richard R. Carrillo; Egidio D'Angelo; Eduardo Ros
The cerebellum is known to play a critical role in learning relevant patterns of activity for adaptive motor control, but the underlying network mechanisms are only partly understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for limited aspects of learning. Recently, the role of additional forms of plasticity in the granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered. In particular, learning at DCN synapses allows for generalization, but convergence to a stable state requires hundreds of repetitions. In this paper we have explored the putative role of the IO-DCN connection by endowing it with adaptable weights and exploring its implications in a closed-loop robotic manipulation task. Our results show that IO-DCN plasticity accelerates convergence of learning by up to two orders of magnitude without conflicting with the generalization properties conferred by DCN plasticity. Thus, this model suggests that multiple distributed learning mechanisms provide a key for explaining the complex properties of procedural learning and open up new experimental questions for synaptic plasticity in the cerebellar network.
International Journal of Neural Systems | 2013
Silvia Tolu; Mauricio Vanegas; Jesús Alberto Garrido; Niceto R. Luque; Eduardo Ros
In this work, a basic cerebellar neural layer and a machine learning engine are embedded in a recurrent loop which avoids dealing with the motor error or distal error problem. The presented approach learns the motor control based on available sensor error estimates (position, velocity, and acceleration) without explicitly knowing the motor errors. The paper focuses on how to decompose the input into different components in order to facilitate the learning process using an automatic incremental learning model (locally weighted projection regression (LWPR) algorithm). LWPR incrementally learns the forward model of the robot arm and provides the cerebellar module with optimal pre-processed signals. We present a recurrent adaptive control architecture in which an adaptive feedback (AF) controller guarantees a precise, compliant, and stable control during the manipulation of objects. Therefore, this approach efficiently integrates a bio-inspired module (cerebellar circuitry) with a machine learning component (LWPR). The cerebellar-LWPR synergy makes the robot adaptable to changing conditions. We evaluate how this scheme scales for robot-arms of a high number of degrees of freedom (DOFs) using a simulated model of a robot arm of the new generation of light weight robots (LWRs).
International Journal of Neural Systems | 2016
Jesús Alberto Garrido; Niceto R. Luque; Silvia Tolu; Egidio D'Angelo
The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.
IEEE Transactions on Biomedical Engineering | 2016
Alberto Antonietti; Claudia Casellato; Jesús Alberto Garrido; Niceto R. Luque; Francisco Naveros; Eduardo Ros; Egidio D'Angelo; Alessandra Pedrocchi
Goal: In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. Methods: By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. Results: First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both “timing” and “amplitude”, expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. Conclusions: We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. Significance: This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.