Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji C. Bihl is active.

Publication


Featured researches published by Ji C. Bihl.


Experimental Cell Research | 2015

Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways.

Xiang Xiao; Cheng Zhang; Xiaotang Ma; Huilai Miao; Jinju Wang; Langni Liu; Shuzhen Chen; Rong Zeng; Yanfang Chen; Ji C. Bihl

Angiotensin (Ang) II, the main effector of the renin-angiotensin system, has been implicated in the pathogenesis of vascular diseases. Ang-(1-7) binds to the G protein-coupled Mas receptor (MasR) and can exert vasoprotective effects. We investigated the effects and underlying mechanisms of Ang-(1-7) on Ang II-induced dysfunction and oxidative stress in human brain microvascular endothelial cells (HbmECs). The pro-apoptotic activity, reactive oxygen species (ROS) and nitric oxide (NO) productions in HbmECs were measured. The protein expressions of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS) and their phosphorylated forms (p-Akt and p-eNOS) were examined by western blot. MasR antagonist and phosphatidylinositol-3-kinase (PI3K) inhibitor were used for receptor/pathway verification. We found that Ang-(1-7) suppressed Ang II-induced pro-apoptotic activity, ROS over-production and NO reduction in HbmECs, which were abolished by MasR antagonist. In addition, Ang-(1-7) down-regulated the expression of Nox2, and up-regulated the ratios of p-Akt/Akt and its downstream p-eNOS/eNOS in HbmECs. Exposure to PI3K inhibitor partially abrogated Ang-(1-7)-mediated protective effects in HbmECs. Our data suggests that Ang-(1-7)/MasR axis protects HbmECs from Ang II-induced dysfunction and oxidative stress via inhibition of Nox2/ROS and activation of PI3K/NO pathways.


Journal of Stroke & Cerebrovascular Diseases | 2015

The Role of Circulating Platelets Microparticles and Platelet Parameters in Acute Ischemic Stroke Patients

Yusen Chen; Yun Xiao; Zhijun Lin; Xiang Xiao; Caixia He; Ji C. Bihl; Bin Zhao; Xiaotang Ma; Yanfang Chen

BACKGROUND Platelet activation and aggregation are critical in the pathogenesis of acute ischemic stroke (AIS). Circulating platelet microparticles (PMPs) and platelet parameters are biologic markers of platelet function in AIS patients; however, their associations with stroke subtypes and infarct volume remain unknown. METHODS We recruited 112 AIS patients including large-artery atherosclerosis (LAA) and small-artery occlusion [SAO] subtypes and 35 controls in this study. Blood samples were collected at admission and after antiplatelet therapy. The levels of circulating PMPs and platelet parameters (mean platelet volume [MPV], platelet count, plateletocrit, and platelet distribution width) were determined by flow cytometry and hematology analysis, respectively. Infarct volume was examined at admission by magnetic resonance imaging. RESULTS (1) The levels of circulating PMPs and MPV were significantly elevated in AIS patients compared with healthy controls; (2) the level of circulating PMPs, but not platelet parameters, was decreased after antiplatelet therapy in AIS patients; (3) the infarct volume in LAA subtype was larger than that in SAO subtype. Notably, circulating PMP level was positively correlated with the infarct volume in LAA subtype. No association with infarct volume in either AIS subtype was observed for platelet parameters; and (4) according to the regression analysis, circulating PMP was an independent risk factor for the infarct volume in pooled AIS patients after adjustments of other impact factors (hypertension and diabetes). CONCLUSIONS Our results suggest that circulating PMP level is associated with cerebral injury of AIS, which offers a novel evaluation parameter for AIS patients.


Neuroscience | 2014

Activation of the ACE2/Ang-(1–7)/Mas Pathway Reduces Oxygen–Glucose Deprivation-Induced Tissue Swelling, ROS Production, and Cell Death in Mouse Brain with Angiotensin II Overproduction

J. Zheng; Guangze Li; Shuzhen Chen; Ji C. Bihl; J. Buck; Y. Zhu; Huijing Xia; Eric Lazartigues; Yanfang Chen; James E. Olson

We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production.


Molecular Brain | 2016

Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway

Jinju Wang; Yusen Chen; Yi Yang; Xiang Xiao; Shuzhen Chen; Cheng Zhang; Bradley S. Jacobs; Bin Zhao; Ji C. Bihl; Yanfang Chen

BackgroundProtection of cerebral endothelial cells (ECs) from hypoxia/reoxygenation (H/R)-induced injury is an important strategy for treating ischemic stroke. In this study, we investigated whether co-culture with endothelial progenitor cells (EPCs) and neural progenitor cells (NPCs) synergistically protects cerebral ECs against H/R injury and the underlying mechanism.ResultsEPCs and NPCs were respectively generated from inducible pluripotent stem cells. Human brain ECs were used to produce an in vitro H/R-injury model. Data showed: 1) Co-culture with EPCs and NPCs synergistically inhibited H/R-induced reactive oxygen species (ROS) over-production, apoptosis, and improved the angiogenic and barrier functions (tube formation and permeability) in H/R-injured ECs. 2) Co-culture with NPCs up-regulated the expression of vascular endothelial growth factor receptor 2 (VEGFR2). 3) Co-culture with EPCs and NPCs complementarily increased vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in conditioned medium, and synergistically up-regulated the expression of p-Akt/Akt and p-Flk1/VEGFR2 in H/R-injured ECs. 4) Those effects could be decreased or abolished by inhibition of both VEGFR2 and tyrosine kinase B (TrkB) or phosphatidylinositol-3-kinase (PI3K).ConclusionsOur data demonstrate that EPCs and NPCs synergistically protect cerebral ECs from H/R-injury, via activating the PI3K/Akt pathway which mainly depends on VEGF and BDNF paracrine.


Molecular Brain | 2016

Microvascular Endothelial Cells-Derived Microvesicles Imply in Ischemic Stroke by Modulating Astrocyte and Blood Brain Barrier Function and Cerebral Blood Flow

Qunwen Pan; Caixia He; Hua Liu; Xiaorong Liao; Bingyan Dai; Yanfang Chen; Yi Yang; Bin Zhao; Ji C. Bihl; Xiaotang Ma

BackgroundEndothelial cell (EC) released microvesicles (EMVs) can affect various target cells by transferring carried genetic information. Astrocytes are the main components of the blood brain barrier (BBB) structure in the brain and participate in regulating BBB integrity and blood flow. The interactions between ECs and astrocytes are essential for BBB integrity in homeostasis and pathological conditions. Here, we studied the effects of human brain microvascular ECs released EMVs on astrocyte functions. Additionally, we investigated the effects of EMVs treated astrocytes on regulating BBB function and cerebral ischemic damage.ResultsEMVs prepared from ECs cultured in normal condition (n-EMVs) or oxygen and glucose deprivation (OGD-EMVs) condition had diverse effects on astrocytes. The n-EMVs promoted, while the OGD-EMVs inhibited the proliferation of astrocytes via regulating PI3K/Akt pathway. Glial fibrillary acidic protein (GFAP) expression (marker of astrocyte activation) was up-regulated by n-EMVs, while down-regulated by OGD-EMVs. Meanwhile, n-EMVs inhibited but OGD-EMVs promoted the apoptosis of astrocytes accompanied by up/down-regulating the expression of Caspase-9 and Bcl-2. In the BBB model of ECs-astrocytes co-culture, the n-EMVs, conversely to OGD-EMVs, decreased the permeability of BBB accompanied with up-regulation of zonula occudens-1(ZO-1) and Claudin-5. In a transient cerebral ischemia mouse model, n-EMVs ameliorated, while OGD-EMVs aggravated, BBB disruption, local cerebral blood flow (CBF) reduction, infarct volume and neurological deficit score.ConclusionsOur data suggest that EMVs diversely modulate astrocyte functions, BBB integrity and CBF, and could serve as a novel therapeutic target for ischemic stroke.


Vascular Pharmacology | 2015

Angiotensin-(1–7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: Role of the NFкB inflammatory pathway

Ji C. Bihl; Cheng Zhang; Yuhui Zhao; Xiang Xiao; Xiaotang Ma; Yusen Chen; Shuzhen Chen; Bin Zhao; Yanfang Chen

Angiotensin (Ang)-(1-7) is a potential vasoprotective peptide. In the present study, we investigated its counteractive effects to Ang II on vascular smooth muscle cells (VSMCs) and intracerebral hemorrhagic stroke (ICH) through inflammatory mechanism. In in vitro experiments, human brain VSMCs (HBVSMCs) were treated with vehicle, Ang II, Ang II+Ang-(1-7), Ang II+A-779 or Ang II+Ang-(1-7)+A-779 (Mas receptor antagonist). HBVSMC proliferation, migration and apoptosis were determined by methyl thiazolyltetrazolium, wound healing assay and flow cytometry, respectively. In in vivo experiments, C57BL/6 mice were divided into vehicle, Ang II, Ang II+Ang-(1-7), Ang II+A-779 or Ang II+Ang-(1-7)+A-779 groups before they were subjected to collagenase-induced ICH or sham surgery. Hemorrhage volume and middle cerebral artery (MCA) remodeling were determined by histological analyses. Levels of NFκB, inhibitor of κBα (IκBα), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein 1 (MCP-1) and interleukin (IL-8) were measured by western blot or ELISA. We found that 1) Ang II increased HBVSMC migration, proliferation and apoptosis, and increased the blood pressure (BP), neurological deficit score, MCA remodeling and hemorrhage volume in ICH mice. 2) Ang-(1-7) counteracted these effects of Ang II, which was independent of BP, with the down-regulation of NFκB, up-regulation of IκBα, and decreased levels of TNF-α, MCP-1 and IL-8. 3) The beneficial effects of Ang-(1-7) could be abolished by A-779. In conclusion, Ang-(1-7) counteracts the effects of Ang II on ICH via modulating NFκB inflammation pathway in HBVSMCs and cerebral microvessels.


American Journal of Physiology-endocrinology and Metabolism | 2016

The effects of microvesicles on endothelial progenitor cells are compromised in type 2 diabetic patients via downregulation of the miR-126/VEGFR2 pathway

Keng Wu; Yi Yang; Yun Zhong; Hala Mustafa Ammar; Peihua Zhang; Runmin Guo; Hua Liu; Chuanfang Cheng; Thomas M. Koroscil; Yanfang Chen; Shiming Liu; Ji C. Bihl

Our previous study showed that circulating microvesicles (cMVs) of diabetic mice have negative effects on the function of endothelial progenitor cells (EPCs). Whether this is true in diabetic patients deserves further study. In this study, the effects of cMVs and EPC-derived MVs (EPC-MVs) on EPC migration, apoptosis, and reactive oxygen species (ROS) production in healthy controls, well-controlled, and uncontrolled diabetic patients were investigated. The levels of miR-126 and vascular endothelial growth factor receptor 2 (VEGFR2) in cMVs, EPC-MVs, and/or EPCs were analyzed. Moreover, miR-126 inhibitor or mimic was applied to EPCs to modulate the miR-126 level in EPC-MVs. We found the following: 1) the circulating EPC level was reduced but the circulating EPC-MV level increased in uncontrolled diabetic patients; 2) the cMVs and EPC-MVs of healthy controls had beneficial effects on EPCs (migration, apoptosis, ROS), whereas the effects were reversely changed in the cMVs and EPC-MVs of uncontrolled diabetic patients; and 3) the cMVs and EPC-MVs of uncontrolled diabetic patients carried less miR-126 and had downregulated VEGFR2 expression in EPCs. Manipulating the miR-126 level in EPC-MVs with inhibitor or mimic changed their function. The effects of cMVs and EPC-MVs are compromised in diabetes due to the reduction of their carried miR-126, which might provide a therapy target for diabetic vascular complications.


Stem Cells International | 2016

The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

Jinju Wang; Runmin Guo; Yi Yang; Bradley S. Jacobs; Suhong Chen; Ifeanyi Iwuchukwu; Kenneth Gaines; Yanfang Chen; Richard Simman; Guiyuan Lv; Keng Wu; Ji C. Bihl

Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA) system. The sensitivities of the cell origin markers for ECs (CD105, CD144) and EPCs (CD34, KDR) were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63), platelets (CD41), erythrocytes (CD235a), and microvesicles (Annexin V). Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery.


Oncotarget | 2017

Glioma stem cells-derived exosomes promote the angiogenic ability of endothelial cells through miR-21/VEGF signal

Xu Sun; Xiaotang Ma; Jinju Wang; Yuhui Zhao; Yue Wang; Ji C. Bihl; Yanfang Chen; Chuanlu Jiang

Glioma stem cells (GSCs) play an important role in glioblastoma prognosis. Exosomes (EXs) mediate cell communication by delivering microRNAs (miRs). Glioblastoma has a high level of miR-21 which could upregulate vascular endothelial growth factor (VEGF) expression. We hypothesized GSC-EXs can promote the angiogenic ability of endothelial cells (ECs) through miR-21/VEGF signal. GSCs were isolated from U-251 cells with stem cell marker CD133. GSCs transfected without or with scramble or miR-21 mimics were used to produce GSC-EXscon, GSC-EXssc and GSC-EXsmiR-21. Human brain ECs were co-cultured with vehicle, GSC-EXscon, GSC-EXssc or GSC-EXsmiR-21 plus VEGF siRNAs (siRNAVEGF). After 24 hours, the angiogenic abilities of ECs were evaluated. The levels of miR-21, VEGF and p-Flk1/VEGFR2 were determined. Results showed: 1) Over 90% of purified GSCs expressed CD133; 2) The levels of miR-21 and VEGF in GSCs and GSC-EXs were up-regulated by miR-21 mimic transfection; 3) Compared to GSC-EXscon or GSC-EXssc, GSC-EXsmiR-21 were more effective in elevating the levels of miR-21 and VEGF, and the ratio of p-Flk1/VEGFR2 in ECs; 4) GSC-EXsmiR-21 were more effective in promoting the angiogenic ability of ECs than GSC-EXscon or GSC-EXssc, which were remarkably reduced by siRNAVEGF pretreatment. In conclusion, GSC-EXs can promote the angiogenic ability of ECs by stimulating miR-21/VEGF/VEGFR2 signal pathway.


Scientific Reports | 2016

Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-Dot Based Nanoparticle Tracking Analysis

Jinju Wang; Yun Zhong; Xiaotang Ma; Xiang Xiao; Chuanfang Cheng; Yusen Chen; Ifeanyi Iwuchukwu; Kenneth Gaines; Bin Zhao; Shiming Liu; Jeffrey B. Travers; Ji C. Bihl; Yanfang Chen

Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs.

Collaboration


Dive into the Ji C. Bihl's collaboration.

Top Co-Authors

Avatar

Yanfang Chen

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Jinju Wang

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Xiaotang Ma

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar

Bin Zhao

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar

Yi Yang

Wuhan Sports University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuzhen Chen

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Xiang Xiao

Wright State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Liu

Wuhan Sports University

View shared research outputs
Researchain Logo
Decentralizing Knowledge