Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanfang Chen is active.

Publication


Featured researches published by Yanfang Chen.


Cell | 2010

DAPK1 Interaction with NMDA Receptor NR2B Subunits Mediates Brain Damage in Stroke

Weihong Tu; Xin Xu; Lisheng Peng; Xiaofen Zhong; Wenfeng Zhang; Mangala M. Soundarapandian; Cherine Balel; Manqi Wang; Nali Jia; Wen Zhang; Frank Lew; Sic L. Chan; Yanfang Chen; YouMing Lu

N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extrasynaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292-1304 (NR2B(CT)). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2B(CT) that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca(2+) influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extrasynaptic sites and this interaction acts as a central mediator for stroke damage.


Autonomic Neuroscience: Basic and Clinical | 2006

Nocturnal hypertension in mice consuming a high fructose diet

Vera Farah; Khalid M. Elased; Yanfang Chen; Mary Key; Tatiana Sousa Cunha; Maria Claudia Irigoyen; Mariana Morris

OBJECTIVE To investigate the effect of fructose consumption on the light/dark pattern of blood pressure, heart rate and autonomic neural function in mice. BACKGROUND Insulin resistant diabetes is associated with hypertension and autonomic dysfunction. There is evidence that the increasing incidence of diabetes may be related to dietary changes, including consumption of high levels of fructose. DESIGN/METHODS C57/BL mice, instrumented with radiotelemetric arterial catheters, were fed a control or high fructose diet (60%). Cardiovascular parameters measured were light/dark pattern of mean arterial pressure (MAP), heart rate (HR) and variability (time and frequency domain). We also measured plasma insulin, glucose, lipids and angiotensin II (Ang II) as well as glucose tolerance. In situ hybridization was used to measure brainstem expression of tyrosine hydroxylase (TH) and Ang AT1a mRNA. RESULTS Fructose diet (8 weeks) produced an increase in MAP, variance and low frequency domain (14+/-3 vs. 33+/-4 mm Hg(2), variance and 10+/-2 vs. 26+/-4 mm Hg(2), LF, control vs. fructose, P<0.01). The changes occurred only at night, a period of activity for mice. Glucose tolerance was attenuated in the fructose group. Fructose also increased plasma cholesterol (80+/-1 vs. 126+/-2 mg/dl, control vs. fructose, P<0.05) and plasma Ang II (18+/-5 vs.65+/-12 pg/ml, control vs. fructose, P<0.05). Depressor responses to alpha(1)-adrenergic blockade with prasozin were augmented in fructose-fed mice. Using quantitative in situ hybridization, we found that Ang AT1a receptor and TH mRNA expression were significantly increased in the brainstem locus coeruleus. CONCLUSION A high fructose diet in mice produced nocturnal hypertension and autonomic imbalance which may be related to activation of sympathetic and angiotensin systems.


Circulation Research | 2003

AT1b Receptor Predominantly Mediates Contractions in Major Mouse Blood Vessels

Yingbi Zhou; Yanfang Chen; Wessel P. Dirksen; Mariana Morris; Muthu Periasamy

Abstract— In rodents, angiotensin (Ang) II type-1 (AT1) receptors exist as two pharmacologically identical subtypes: AT1a and AT1b. Recent studies have utilized mouse models with specific subtype receptor deletions to differentiate the functional difference between AT1 subtypes. However, little information is available on AT1 subtype expression in mouse vasculature. Therefore, in this study, AT1a−/− mice and wild-type littermates (AT1a+/+) were used to examine AT1 subtype expression and its functional relevance in mouse arterial vessels. Using RT-PCR and restriction enzyme digestion, we showed that AT1b accounts for most of the total AT1 mRNA in mouse abdominal aorta and femoral artery. In contrast, AT1a is the predominant subtype in kidney. To study the functional role of AT1 subtypes, we measured the in vitro contractility in vessels from AT1a−/− and AT1a+/+ mice. The Ang II concentration response curves in abdominal aorta and femoral artery were comparable between the two mouse strains. Furthermore, the Ang II response in AT1a−/− mouse vessels was completely antagonized by losartan, an AT1 antagonist. These results demonstrate that AT1b receptor is a major mediator for Ang II contractile response in mouse vessels, such as abdominal aorta and femoral artery.


American Journal of Physiology-endocrinology and Metabolism | 2011

Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage

Ji Chen; Shuzhen Chen; Yusen Chen; Cheng Zhang; Jinju Wang; Wenfeng Zhang; Gang Liu; Bin Zhao; Yanfang Chen

For determining the implications of circulating endothelial progenitor cells (cEPCs) and cellular membrane microparticles (MPs) in diabetic stroke, levels of EPCs, EPC-MPs, and endothelium-derived MPs (EMPs) and their correlations with blood glucose concentration, cerebral microvascular density (cMVD), and ischemic damage were investigated in type 2 diabetic db/db and db/+ (wild-type control) mice. Therapeutic efficacy of EPC infusion (preincubated with MPs) was also explored. Ischemic stroke was induced by middle cerebral artery occlusion (MCAO) surgery. Ischemic damage and cMVD were determined using histological analyses. The levels of cEPCs and MPs were determined using flow cytometric analyses. EPC generation and functions were evaluated by in vitro cell cultures. Results showed the following. 1) In db/db mice, the basal level of cEPCs was less and cMVDs were lower, but the levels of circulating EPC-MPs and EMPs were more; 2) MCAO induced a larger infarct volume and less of an increase in cEPCs in db/db mice; 3) the level of cEPCs correlated with blood glucose concentration (negatively), cMVD (positively), and ischemic damage (negatively), but the levels of EPC-MPs and EMPs correlated inversely with those parameters; 4) EPCs were reduced and dysfunctional in db/db mice, and preincubation with db/db MPs impaired EPC functions; and 5) infusion of EPCs preincubated with db/+ MPs increased the level of cEPCs and reduced ischemic damage, and these beneficial effects were reduced or lost in EPCs preincubated with db/db MPs. These data suggest that reduced cEPCs, impaired EPC generation/function, and increased production of MPs might be the mechanisms responsible for increased ischemic damage seen in db/db mice.


Oxidative Medicine and Cellular Longevity | 2013

Effects of Endothelial Progenitor Cell-Derived Microvesicles on Hypoxia/Reoxygenation-Induced Endothelial Dysfunction and Apoptosis

Jinju Wang; Shuzhen Chen; Xiaotang Ma; Chuanfang Cheng; Xiang Xiao; Ji Chen; Shiming Liu; Bin Zhao; Yanfang Chen

Oxidative stress-induced endothelial dysfunction plays a key role in ischemia/reperfusion injury. Recent evidence indicates that endothelial progenitor cell-derived microvesicles (EPC-MVs) can promote angiogenesis of endothelial cells (ECs). Here, we investigated the potential effects of EPC-MVs on hypoxia/reoxygenation (H/R) injury in human brain microvascular ECs (hb-ECs). MVs were prepared from EPCs cultured in a serum deprivation (SD) medium (starving stress, sEPC-MVs) or SD medium containing tumor necrosis factor-α (TNFα) (apoptotic stress, aEPC-MVs). H/R injury model of hb-ECs was produced by 6 hr hypoxia (1% O2) and 24 hr reoxygenation. The H/R hb-ECs were co-cultured with EPC-MVs. Results showed that (1) H/R hb-ECs were dysfunctional and coupled with increased apoptosis and ROS overproduction; (2) under two different conditions, EPCs displayed remarkable difference in caspase 3 and miR126 expression, which were carried by the corresponsive EPC-MVs; (3) functionally, sEPC-MVs had beneficial effects on H/R hb-ECs, whereas aEPC-MVs had detrimental effects; (4) the diverse effects of sEPC-MVs and aEPC-MVs were associated with the changes in miR126 and eNOS expression and were abolished by PI3K inhibitor. In conclusion, sEPCs-MVs and aEPC-MVs are functionally different on hb-EC apoptosis and dysfunction via their carried RNAs associated with ROS production and PI3K/eNOS/NO pathway.


CNS Neuroscience & Therapeutics | 2013

Endothelial Progenitor Cells: Therapeutic Perspective for Ischemic Stroke

Yuhui Zhao; Bin Yuan; Ji Chen; De-Hui Feng; Bin Zhao; Chao Qin; Yanfang Chen

Endothelial progenitor cells (EPCs), which can be cultured in vitro from mononuclear cells in peripheral blood or bone marrow, express both hematopoietic stem cell and endothelial cell markers on their surface. They are believed to participate in endothelial repair and postnatal angiogenesis due to their abilities of differentiating into endothelial cells and secreting protective cytokines and growth factors. Mounting evidence suggests that circulating EPCs are reduced and dysfunctional in various diseases including hypertension, diabetes, coronary heart disease, and ischemic stroke. Therefore, EPCs have been documented to be a potential biomarker for vascular diseases and a hopeful candidate for regenerative medicine. Ischemic stroke, as the major cause of disability and death, still has limited therapeutics based on the approaches of vascular recanalization or neuronal protection. Emerging evidence indicates that transplantation of EPCs is beneficial for the recovery of ischemic cerebral injury. EPC‐based therapy could open a new avenue for ischemic cerebrovascular disease. Currently, clinical trials for evaluating EPC transfusion in treating ischemic stroke are underway. In this review, we summarize the general conceptions and the characteristics of EPCs, and highlight the recent research developments on EPCs. More importantly, the rationale, perspectives, and strategies for using them to treat ischemic stroke will be discussed.


Hypertension | 2013

Angiotensin-Converting Enzyme 2 Priming Enhances the Function of Endothelial Progenitor Cells and Their Therapeutic Efficacy

Ji Chen; Xiang Xiao; Shuzhen Chen; Cheng Zhang; Jianying Chen; Dan Yi; Vinayak Shenoy; Mohan K. Raizada; Bin Zhao; Yanfang Chen

Angiotensin-converting enzyme 2 (ACE2) is a lately discovered enzyme catalyzing Angiotensin II into Angiotensin 1-7. Angiotensin II has been reported to impair endothelial progenitor cell (EPC) function and is detrimental to stroke. Here, we studied the role of ACE2 in regulating EPC function in vitro and in vivo. EPCs were cultured from human renin and angiotensinogen transgenic (R+A+) mice and their controls (R−A−). In in vitro experiments, EPCs were transduced with lentivirus-ACE2 or lentivirus-green fluorescence protein. The effects of ACE2 overexpression on EPC function and endothelial NO synthase (eNOS)/nicotinamide adenine dinucleotide phosphate oxidase (Nox) expression were determined. ACE2, eNOS, and Nox inhibitors were used for pathway validation. In in vivo studies, the therapeutic efficacy of EPCs overexpressing ACE2 was determined at day 7 after ischemic stroke induced by middle cerebral artery occlusion. We found that (1) lentivirus-ACE2 transduction resulted in a 4-fold increase of ACE2 expression in EPCs. This was accompanied with an increase in eNOS expression and NO production, and a decrease in Nox2 and -4 expression and reactive oxygen species production. (2) ACE2 overexpression improved the abilities of EPC migration and tube formation, which were impaired in R+A+ mice. These effects were inhibited by ACE2 or eNOS inhibitor and further enhanced by Nox inhibitor. (3) Transfusion of lentivirus-ACE2–primed EPCs reduced cerebral infarct volume and neurological deficits, and increased cerebral microvascular density and angiogenesis. Our data demonstrate that ACE2 improves EPC function, via regulating eNOS and Nox pathways, and enhances the efficacy of EPC-based therapy for ischemic stroke.


PLOS ONE | 2012

Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Cerebral Ischemic Damage and Promotes Repair in db/db Diabetic Mice

Ji Chen; Jianying Chen; Shuzhen Chen; Cheng Zhang; Liangqing Zhang; Xiang Xiao; Avik Das; Yuhui Zhao; Bin Yuan; Mariana Morris; Bin Zhao; Yanfang Chen

This study investigated the role of stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis in brain and endothelial progenitor cells (EPCs), and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) followed with high glucose (HG) treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS) inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2) The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3) Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation) and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4) Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.


Hypertension | 2006

Adenovirus-Mediated Small-Interference RNA for In Vivo Silencing of Angiotensin AT1a Receptors in Mouse Brain

Yanfang Chen; Hao Chen; Andrea Hoffmann; David R. Cool; Debra I. Diz; Mark C. Chappell; Alex F. Chen; Mariana Morris

Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for selectively silencing AT1a or AT1b receptor subtypes in cultured Neuro-2a cells using real-time RT-PCR. For in vivo functional studies, we used C57BL mice with arterial telemetric probes and computerized licking monitors to test the effect of adenovirus carrying the DNA sequence coding AT1a shRNA (Ad-AT1a-shRNA). Ad-AT1a-shRNA was injected into the lateral ventricle (intracerebroventricular) or the brain stem nucleus tractus solitaries/dorsal vagal nucleus (NTS/DVN) with measurement of water intake, blood pressure (BP), and heart rate (HR) for up to 20 days after injection. Tissue culture studies verified the specificity and the efficiency of the constructs. In animal studies, &bgr;-galactosidase staining and Ang receptor binding assays showed expression of shRNA and downregulation of Ang AT1 receptors in the subfornical organ and NTS/DVN by >70%. Intracerebroventricular injection of Ad-AT1a-shRNA increased water intake with no effect on BP or HR. In contrast, microinjection of Ad-AT1a-shRNA into NTS/DVN caused a decrease in BP with no effect on HR or water intake. Results demonstrate the use of the RNA interference method in site-directed silencing of gene expression and provide a method for the in vivo study of Ang AT1 receptor function.


Brain Research | 2003

Osmotic regulation of angiotensin AT1 receptor subtypes in mouse brain.

Yanfang Chen; Maria José Alves Rocha; Mariana Morris

Experiments were performed to study angiotensin (Ang) AT1a and AT1b mRNA expression in mice, including, examination of brain distribution and the effect of salt loading. In situ hybridization (ISH) methods showed that the pattern of mRNA expression was identical for AT1a and AT1b, with cellular labeling in rostral forebrain, hypothalamus and brainstem. Receptor mRNAs were concentrated in brain regions involved in the regulation of electrolyte and cardiovascular balance. Immunocytochemistry with AT1 specific antisera showed a pattern that was consistent with the ISH. Reverse transcriptase-polymerase chain reaction (RT-PCR) of hypothalamus and pituitary verified the presence of both AT1a and AT1b mRNA. Using quantitative ISH, we found that AT1a mRNA expression was significantly increased after 5 days of 2% NaCl consumption in anterior third ventricle (AV3V), paraventricular hypothalamus (PVN) and subfornical organ (SFO), but unchanged in anterior pituitary. There were no significant changes in AT1b mRNA. These results document the utility of ISH coupled with quantitative imaging techniques for the study of subtype specific expression. Using ISH and RT-PCR, we verified that AT1a and AT1b receptors are expressed in mouse brain and pituitary and show a similar pattern of distribution. Salt loading produced a specific increase in AT1a mRNA in osmosensitive regions, suggesting that this receptor subtype is regulated by sodium/osmolar input.

Collaboration


Dive into the Yanfang Chen's collaboration.

Top Co-Authors

Avatar

Jinju Wang

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Shuzhen Chen

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Bin Zhao

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaotang Ma

Guangdong Medical College

View shared research outputs
Top Co-Authors

Avatar

Ji C. Bihl

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Ji Chen

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Xiang Xiao

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Cheng Zhang

Wright State University

View shared research outputs
Top Co-Authors

Avatar

Yi Yang

Wuhan Sports University

View shared research outputs
Researchain Logo
Decentralizing Knowledge