Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ji Hoon Park is active.

Publication


Featured researches published by Ji Hoon Park.


Scientific Reports | 2015

Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis

Pankaj Attri; Yong Hee Kim; Dae Hoon Park; Ji Hoon Park; Young June Hong; Han Sup Uhm; Kyoung-Nam Kim; Alexander Fridman; Eun Ha Choi

Through this work, we have elucidated the mechanism of hydroxyl radicals (OH•) generation and its life time measurements in biosolution. We observed that plasma-initiated ultraviolet (UV) photolysis were responsible for the continues generation of OH• species, that resulted in OH• to be major reactive species (RS) in the solution. The density and lifetime of OH• species acted inversely proportional to each other with increasing depth inside the solution. The cause of increased lifetime of OH• inside the solution is predicted using theoretical and semiempirical calculations. Further, to predict the mechanism of conversion of hydroxide ion (OH−) to OH• or H2O2 (hydrogen peroxide) and electron, we determined the current inside the solution of different pH. Additionally, we have investigated the critical criterion for OH• interaction on cancer cell inducing apoptosis under effective OH• exposure time. These studies are innovative in the field of plasma chemistry and medicine.


Scientific Reports | 2015

Influence of reactive species on the modification of biomolecules generated from the soft plasma

Pankaj Attri; Naresh Kumar; Ji Hoon Park; Dharmendra Kumar Yadav; Sooho Choi; Han S. Uhm; In Tae Kim; Eun Ha Choi; Weontae Lee

Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.


Journal of Physics D | 2016

The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells

Naresh Kumar; Ji Hoon Park; Su Nam Jeon; Bong Sang Park; Eun Ha Choi; Pankaj Attri

In the present work, we have generated reactive species (RS) through microsecond-pulsed plasma (MPP) in the cell culture media using a Marx generator with point–point electrodes of approximately 0.06 J discharge energy/pulse. RS generated in culture media through MPP have a selective action between growth of the H460 lung cancer cells and L132 normal lung cells. We observed that MPP-activated media (MPP-AM) induced apoptosis on H460 lung cancer cells through an oxidative DNA damage cascade. Additionally, we studied the apoptosis-related mRNA expression, DNA oxidation and polymerase-1 (PARP-1) cleaved analysis from treated cancer cells. The result proves that radicals generated through MPP play a pivotal role in the activation of media that induces the selective killing effect.


Scientific Reports | 2015

A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

Ji Hoon Park; Naresh Kumar; Dae Hoon Park; Maksudbek Yusupov; Erik C. Neyts; Christof Verlackt; Annemie Bogaerts; Min Ho Kang; Han Sup Uhm; Eun Ha Choi; Pankaj Attri

Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.


Scientific Reports | 2016

Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet

Ji Hoon Park; Minsup Kim; Masaharu Shiratani; Art E. Cho; Eun Ha Choi; Pankaj Attri

Over the last few years, the variation in liquid chemistry due to the development of radicals generated by cold atmospheric plasma (CAP) has played an important role in plasma medicine. CAP direct treatment or CAP activated media treatment in cancer cells shows promising anticancer activity for both in vivo and in vitro studies. However, the anticancer activity or antimicrobial activity varies between plasma devices due to the different abilities among plasma devices to generate the reactive oxygen and nitrogen species (RONS) at different ratios and in different concentrations. While the generation of RONS depends on many factors, the feeding gas plays the most important role among the factors. Hence, in this study we used different compositions of feeding gas while fixing all other plasma characteristics. We used Ar, Ar-O2 (at different ratios), and Ar-N2 (at different ratios) as the working gases for CAP and investigated the structural changes in proteins (Hemoglobin (Hb) and Myoglobin (Mb)). We then analyzed the influence of RONS generated in liquid on the conformations of proteins. Additionally, to determine the influence of H2O2 on the Hb and Mb structures, we used molecular dynamic simulation.


Scientific Reports | 2016

Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

Pankaj Attri; Maksudbek Yusupov; Ji Hoon Park; Lakshmi Prasanna Lingamdinne; Janardhan Reddy Koduru; Masaharu Shiratani; Eun Ha Choi; Annemie Bogaerts

Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.


Scientific Reports | 2016

Influence of plasma-activated compounds on melanogenesis and tyrosinase activity

Anser Ali; Zaman Ashraf; Naresh Kumar; Muhammad Rafiq; Farukh Jabeen; Ji Hoon Park; Ki Hong Choi; Seunghyun Lee; Sung-Yum Seo; Eun Ha Choi; Pankaj Attri

Many organic chemists around the world synthesize medicinal compounds or extract multiple compounds from plants in order to increase the activity and quality of medicines. In this work, we synthesized new eugenol derivatives (ED) and then treated them with an N2 feeding gas atmospheric pressure plasma jet (APPJ) to increase their utility. We studied the tyrosinase-inhibition activity (activity test) and structural changes (circular dichroism) of tyrosinase with ED and plasma activated eugenol derivatives (PAED) in a cell-free environment. Later, we used docking studies to determine the possible interaction sites of ED and PAED compounds with tyrosinase enzyme. Moreover, we studied the possible effect of ED and PAED on melanin synthesis and its mechanism in melanoma (B16F10) cells. Additionally, we investigated the structural changes that occurred in activated ED after plasma treatment using nuclear magnetic resonance (NMR). Hence, this study provides a new perspective on PAED for the field of plasma medicine.


Scientific Reports | 2017

Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet

Sooho Choi; Pankaj Attri; Inhwan Lee; Jeongmin Oh; Ji Hye Yun; Ji Hoon Park; Eun Ha Choi; Weontae Lee

The variation in the biological function of proteins plays an important role in plasma medicine and sterilization. Several non-thermal plasma sources with different feeding gases are used worldwide for plasma treatment, including dielectric barrier discharge (DBD) and atmospheric-pressure plasma jet (APPJ) as the most commonly used sources. Therefore, in the present work, we used both DBD and APPJ plasma sources with N2 and air as feeding gases to evaluate the effects on the structural, thermodynamic, and activity changes of enzymes. In the current work, we used lysozyme as a model enzyme and verified the structural changes using circular dichroism (CD), fluorescence, and X-ray crystallography. In addition, we investigated the lysozyme thermodynamics using CD thermal analysis and changes in the B-factor from X-ray crystallography. The results showed that lysozyme activity decreased after the plasma treatment. From these analyses, we concluded that N2-feeding gas plasma disturbs the structure and activity of lysozyme more than Air feeding gas plasma in our experimental studies. This study provides novel fundamental information on the changes to enzymes upon plasma treatment, which has been absent from the literature until now.


RSC Advances | 2015

Effect of nanosecond-pulsed plasma on the structural modification of biomolecules

Ji Hoon Park; Naresh Kumar; Han Sup Uhm; Weontae Lee; Eun Ha Choi; Pankaj Attri

In this study, we generated reactive species (RS) (OH˙, H˙, NO˙, H2O2, ONOO−, ONOOH, O2˙−, HO2˙, NO2−) through the use of nanosecond-pulsed plasma (NPP). In order, to understand the action of NPP on biomolecules, we have studied circular dichroism (CD) spectroscopy (spectral and thermodynamic analysis), gel electrophoresis, 1D NMR, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) for quantitative and qualitative bioanalysis. The measurements revealed that the RS generated by the NPP structurally modified the proteins [myoglobin (Mb) and hemoglobin (Hb)], amino acids [lysine (Lys), L-proline, L-threonine (Thr), L-asparagine (Asn), L-glutamic acid (Glu) and glycine] and calf thymus DNA. After the discharge, the thermodynamic profile of Hb exhibited more changes compared to Mb. Furthermore, we examined the protein carbonylation/oxidation to understand the structural modification for both proteins after NPP treatment. Moreover, we also observed the oxidation in calf thymus DNA after the NPP treatment. As a result, these studies extend the scope for next generation plasma-based treatments and understanding of the mechanism of NPP on biomolecules.


Scientific Reports | 2018

Impact of Gamma rays and DBD plasma treatments on wastewater treatment

Pankaj Attri; Fumiyoshi Tochikubo; Ji Hoon Park; Eun Ha Choi; Kazunori Koga; Masaharu Shiratani

The rapid growth in world population brings with it the need for improvement in the current technology for water purification, in order to provide adequate potable water to everyone. Although an advanced oxidation process has been used to purify wastewater, its action mechanism is still not clear. Therefore, in the present study we treat dye-polluted water with gamma rays and dielectric barrier discharge (DBD) plasma. We study the wastewater treatment efficiency of gamma rays and DBD plasma at different absorbed doses, and at different time intervals, respectively. Methyl orange and methylene blue dyes are taken as model dyes. To understand the effects of environment and humidity on the decolorization of these dyes, we use various gas mixtures in the DBD plasma reactor. In the plasma reactor, we use the ambient air and ambient air + other gas (oxygen, nitrogen, and argon) mixtures, respectively, for the treatment of dyes. Additionally, we study the humidity effect on the decolorization of dyes with air plasma. Moreover, we also perform plasma simulation in different environment conditions, to understand which major radicals are generated during the plasma treatments, and determine their probable densities.

Collaboration


Dive into the Ji Hoon Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge